24 research outputs found

    A general lower bound for collaborative tree exploration

    Full text link
    We consider collaborative graph exploration with a set of kk agents. All agents start at a common vertex of an initially unknown graph and need to collectively visit all other vertices. We assume agents are deterministic, vertices are distinguishable, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (knk \leq \sqrt n) and large (knk \geq n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ω(logk/loglogk)\Omega(\log k / \log\log k) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range knlogcnk \leq n \log^c n for any cNc \in \mathbb{N}. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1)k = Dn^{1+o(1)} agents has a competitive ratio of ω(1)\omega(1), while Dereniowski et al. gave an algorithm with k=Dn1+εk = Dn^{1+\varepsilon} agents and competitive ratio O(1)O(1), for any ε>0\varepsilon > 0 and with DD denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=nk = n agents, there exist trees of arbitrarily large height DD that require Ω(D2)\Omega(D^2) rounds, and we provide a simple algorithm that matches this bound for all trees

    Collaborative search on the plane without communication

    Get PDF
    We generalize the classical cow-path problem [7, 14, 38, 39] into a question that is relevant for collective foraging in animal groups. Specifically, we consider a setting in which k identical (probabilistic) agents, initially placed at some central location, collectively search for a treasure in the two-dimensional plane. The treasure is placed at a target location by an adversary and the goal is to find it as fast as possible as a function of both k and D, where D is the distance between the central location and the target. This is biologically motivated by cooperative, central place foraging such as performed by ants around their nest. In this type of search there is a strong preference to locate nearby food sources before those that are further away. Our focus is on trying to find what can be achieved if communication is limited or altogether absent. Indeed, to avoid overlaps agents must be highly dispersed making communication difficult. Furthermore, if agents do not commence the search in synchrony then even initial communication is problematic. This holds, in particular, with respect to the question of whether the agents can communicate and conclude their total number, k. It turns out that the knowledge of k by the individual agents is crucial for performance. Indeed, it is a straightforward observation that the time required for finding the treasure is Ω\Omega(D + D 2 /k), and we show in this paper that this bound can be matched if the agents have knowledge of k up to some constant approximation. We present an almost tight bound for the competitive penalty that must be paid, in the running time, if agents have no information about k. Specifically, on the negative side, we show that in such a case, there is no algorithm whose competitiveness is O(log k). On the other hand, we show that for every constant \epsilon \textgreater{} 0, there exists a rather simple uniform search algorithm which is O(log1+ϵk)O( \log^{1+\epsilon} k)-competitive. In addition, we give a lower bound for the setting in which agents are given some estimation of k. As a special case, this lower bound implies that for any constant \epsilon \textgreater{} 0, if each agent is given a (one-sided) kϵk^\epsilon-approximation to k, then the competitiveness is Ω\Omega(log k). Informally, our results imply that the agents can potentially perform well without any knowledge of their total number k, however, to further improve, they must be given a relatively good approximation of k. Finally, we propose a uniform algorithm that is both efficient and extremely simple suggesting its relevance for actual biological scenarios

    Time Versus Cost Tradeoffs for Deterministic Rendezvous in Networks

    Full text link
    Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous\mathit{rendezvous}. Agents move in synchronous rounds. Each agent has a distinct integer label from the set {1,,L}\{1,\dots,L\}. Two main efficiency measures of rendezvous are its time\mathit{time} (the number of rounds until the meeting) and its cost\mathit{cost} (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound EE on the time of exploration (where EE and a corresponding exploration procedure are known to both agents) and of the size LL of the label space. We present two natural rendezvous algorithms. Algorithm Cheap\mathtt{Cheap} has cost O(E)O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly EE) and time O(EL)O(EL). Algorithm Fast\mathtt{Fast} has both time and cost O(ElogL)O(E\log L). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically EE (i.e., of cost E+o(E)E+o(E)) must have time Ω(EL)\Omega(EL). On the other hand, we show that any deterministic rendezvous algorithm with time complexity O(ElogL)O(E\log L) must have cost Ω(ElogL)\Omega (E\log L)

    Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication

    Get PDF
    We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. In more detail, we propose a new selection complexity metric χ\chi, defined for algorithm A{\cal A} such that χ(A)=b+log\chi({\cal A}) = b + \log \ell, where bb is the number of memory bits used by each agent and \ell bounds the fineness of available probabilities (agents use probabilities of at least 1/21/2^\ell). In this paper, we study the trade-off between the standard performance metric of speed-up, which measures how the expected time to find the target improves with nn, and our new selection metric. In particular, consider nn agents searching for a treasure located at (unknown) distance DD from the origin (where nn is sub-exponential in DD). For this problem, we identify loglogD\log \log D as a crucial threshold for our selection complexity metric. We first prove a new upper bound that achieves a near-optimal speed-up of (D2/n+D)2O()(D^2/n +D) \cdot 2^{O(\ell)} for χ(A)3loglogD+O(1)\chi({\cal A}) \leq 3 \log \log D + O(1). In particular, for O(1)\ell \in O(1), the speed-up is asymptotically optimal. By comparison, the existing results for this problem [Feinerman et al.] that achieve similar speed-up require χ(A)=Ω(logD)\chi({\cal A}) = \Omega(\log D). We then show that this threshold is tight by describing a lower bound showing that if χ(A)<loglogDω(1)\chi({\cal A}) < \log \log D - \omega(1), then with high probability the target is not found within D2o(1)D^{2-o(1)} moves per agent. Hence, there is a sizable gap to the straightforward Ω(D2/n+D)\Omega(D^2/n + D) lower bound in this setting.Comment: appears in PODC 201
    corecore