16 research outputs found

    Tree Memory Networks for Modelling Long-term Temporal Dependencies

    Full text link
    In the domain of sequence modelling, Recurrent Neural Networks (RNN) have been capable of achieving impressive results in a variety of application areas including visual question answering, part-of-speech tagging and machine translation. However this success in modelling short term dependencies has not successfully transitioned to application areas such as trajectory prediction, which require capturing both short term and long term relationships. In this paper, we propose a Tree Memory Network (TMN) for modelling long term and short term relationships in sequence-to-sequence mapping problems. The proposed network architecture is composed of an input module, controller and a memory module. In contrast to related literature, which models the memory as a sequence of historical states, we model the memory as a recursive tree structure. This structure more effectively captures temporal dependencies across both short term and long term sequences using its hierarchical structure. We demonstrate the effectiveness and flexibility of the proposed TMN in two practical problems, aircraft trajectory modelling and pedestrian trajectory modelling in a surveillance setting, and in both cases we outperform the current state-of-the-art. Furthermore, we perform an in depth analysis on the evolution of the memory module content over time and provide visual evidence on how the proposed TMN is able to map both long term and short term relationships efficiently via a hierarchical structure

    Pedestrian Trajectory Prediction with Structured Memory Hierarchies

    Full text link
    This paper presents a novel framework for human trajectory prediction based on multimodal data (video and radar). Motivated by recent neuroscience discoveries, we propose incorporating a structured memory component in the human trajectory prediction pipeline to capture historical information to improve performance. We introduce structured LSTM cells for modelling the memory content hierarchically, preserving the spatiotemporal structure of the information and enabling us to capture both short-term and long-term context. We demonstrate how this architecture can be extended to integrate salient information from multiple modalities to automatically store and retrieve important information for decision making without any supervision. We evaluate the effectiveness of the proposed models on a novel multimodal dataset that we introduce, consisting of 40,000 pedestrian trajectories, acquired jointly from a radar system and a CCTV camera system installed in a public place. The performance is also evaluated on the publicly available New York Grand Central pedestrian database. In both settings, the proposed models demonstrate their capability to better anticipate future pedestrian motion compared to existing state of the art.Comment: To appear in ECML-PKDD 201

    Survey on Vision-based Path Prediction

    Full text link
    Path prediction is a fundamental task for estimating how pedestrians or vehicles are going to move in a scene. Because path prediction as a task of computer vision uses video as input, various information used for prediction, such as the environment surrounding the target and the internal state of the target, need to be estimated from the video in addition to predicting paths. Many prediction approaches that include understanding the environment and the internal state have been proposed. In this survey, we systematically summarize methods of path prediction that take video as input and and extract features from the video. Moreover, we introduce datasets used to evaluate path prediction methods quantitatively.Comment: DAPI 201

    Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-Agent Trajectories

    Full text link
    With the explosion in the availability of spatio-temporal tracking data in modern sports, there is an enormous opportunity to better analyse, learn and predict important events in adversarial group environments. In this paper, we propose a deep decision tree architecture for discriminative dictionary learning from adversarial multi-agent trajectories. We first build up a hierarchy for the tree structure by adding each layer and performing feature weight based clustering in the forward pass. We then fine tune the player role weights using back propagation. The hierarchical architecture ensures the interpretability and the integrity of the group representation. The resulting architecture is a decision tree, with leaf-nodes capturing a dictionary of multi-agent group interactions. Due to the ample volume of data available, we focus on soccer tracking data, although our approach can be used in any adversarial multi-agent domain. We present applications of proposed method for simulating soccer games as well as evaluating and quantifying team strategies.Comment: To appear in 4th International Workshop on Computer Vision in Sports (CVsports) at CVPR 201

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Full text link
    Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel branch was introduced for the hidden state at time t-2 to be directly transferred to time t without the nonlinear transformation at time t-1. This is effective in improving the long-term dependence of RNNs. Then, a novel cell structure named Single Gate Recurrent Unit (SGRU) was presented. This cell structure can reduce the number of parameters for RNNs cell, consequently reducing the computational complexity. Next, applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties. Finally, the performance of our proposed TFC-SGRU was verified through several experiments in terms of long-term memory and anti-interference capabilities. Experimental results demonstrated that our proposed TFC-SGRU model can capture helpful information with time step 1500 and effectively filter out the noise. The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability

    Task Specific Visual Saliency Prediction with Memory Augmented Conditional Generative Adversarial Networks

    Full text link
    Visual saliency patterns are the result of a variety of factors aside from the image being parsed, however existing approaches have ignored these. To address this limitation, we propose a novel saliency estimation model which leverages the semantic modelling power of conditional generative adversarial networks together with memory architectures which capture the subject's behavioural patterns and task dependent factors. We make contributions aiming to bridge the gap between bottom-up feature learning capabilities in modern deep learning architectures and traditional top-down hand-crafted features based methods for task specific saliency modelling. The conditional nature of the proposed framework enables us to learn contextual semantics and relationships among different tasks together, instead of learning them separately for each task. Our studies not only shed light on a novel application area for generative adversarial networks, but also emphasise the importance of task specific saliency modelling and demonstrate the plausibility of fully capturing this context via an augmented memory architecture.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201
    corecore