2 research outputs found

    Energy Efficient Key Management Scheme for Wireless Sensor Networks

    Get PDF
    A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes deployed over a geographical area. Each node is a low-power device that integrates computing, wireless communication, and sensing abilities. Many applications that make use of sensor networks require secure communication. Designing an efficient key establishment scheme is of great importance to the data security in Wireless Sensor Networks. The traditional cryptographic techniques are impractical in Wireless Sensor Networks because of associated high energy and computational overheads.This algorithm supports the establishment of three types of keys for each sensor node, an individual key shared with the base station, a pair wise key shared with neighbor sensor node, and a group key that is shared by all the nodes in the network. The algorithm used for establishing and updating these keys are energy efficient and minimizes the involvement of the base station. Polynomial function is used in the study to calculate the keys during initialization, membership change and key compromise. Periodically the key will be updated. To overcome the problem of energy insufficiency and memory storage and to provide adequate security, the energy efficient scheme is proposed. It works well in undefined deployment environment. Unauthorized nodes should not be allowed to establish communication with network nodes. This scheme when compared with other existing schemes has a very low overhead in computation, communication and storage

    Location dependent key management schemes supported by random selected cell reporters in wireless sensor networks

    Get PDF
    PhD ThesisIn order to secure vital and critical information inside Wireless Sensor Net- works (WSNs), a security requirement of data con dentiality, authenticity and availability should be guaranteed. The leading key management schemes are those that employ location information to generate security credentials. Therefore, this thesis proposes three novel location-dependent key manage- ment schemes. First, a novel Location-Dependent Key Management Protocol for a Single Base Station (LKMP-SBS) is presented. As a location-dependent scheme, the WSN zone is divided virtually into cells. Then, any event report generated by each particular cell is signed by a new type of endorsement called a cell- reporter signature, where cell-reporters are de ned as a set of nodes selected randomly by the BS out of the nodes located within the particular cell. This system is analysed and proved to outperform other schemes in terms of data security requirements. Regarding the data con dentiality, for three values of z (1,2,3) the improvement is 95%, 90% and 85% respectively when 1000 nodes are compromised. Furthermore, in terms of data authenticity an enhancement of 49%, 24%, 12.5% is gained using our approach with z = 1; 2; 3 respectively when half of all nodes are compromised. Finally, the optimum number of cell reporters is extensively investigated related to the security requirements, it is proven to be z = n 2 . The second contribution is the design of a novel Location-Dependent Key Man- agement Protocol for Multiple Base Stations (LKMP-MBS). In this scheme, di erent strategies of handling the WSN by multiple BSs is investigated. Ac- cordingly, the optimality of the scheme is analysed in terms of the number of cell reporters. Both data con dentiality and authenticity have been proven to be / e / 1 N . The optimum number of cell reporters had been calculated as zopt = n 2M , PM `=1 jz(`) optj = n 2M . Moreover, the security robustness of this scheme is analysed and proved to outperform relevant schemes in terms of data con- dentiality and authenticity. Furthermore, in comparison with LKMP-SBS, the adoption of multiple base stations is shown to be signi cantly important in improving the overall system security. The third contribution is the design of the novel Mobility- Enabled, Location- dependant Key Managment Protocol for Multiple BSs (MELKMP-MBS). This scheme presents a key management scheme, which is capable of serving a WSN with mobile nodes. Several types of handover are presented in order to main- tain the mobile node service availability during its movement between two zones in the network. Accordingly, the communication overhead of MELKMP- MBS is analysed, simulated and compared with the overhead of other schemes. Results show a signi cant improvement over other schemes in terms of han- dover e ciency and communication over head. Furthermore, the optimality of WSN design such as the value of N; n is investigated in terms of communi- cation overhead in all protocols and it is shown that the optimum number of nodes in each cell, which cause the minimum communication overhead in the network , is n = 3 p 2N.Ministry of Higher Education and Scienti c Research in Iraq and the Iraqi Cultural Attach e in Londo
    corecore