137 research outputs found

    Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts

    Get PDF
    In this paper, we study the existence and stability of travelling wave solutions of a kinetic reaction-transport equation. The model describes particles moving according to a velocity-jump process, and proliferating thanks to a reaction term of monostable type. The boundedness of the velocity set appears to be a necessary and sufficient condition for the existence of positive travelling waves. The minimal speed of propagation of waves is obtained from an explicit dispersion relation. We construct the waves using a technique of sub- and supersolutions and prove their \eb{weak} stability in a weighted L2L^2 space. In case of an unbounded velocity set, we prove a superlinear spreading. It appears that the rate of spreading depends on the decay at infinity of the velocity distribution. In the case of a Gaussian distribution, we prove that the front spreads as t3/2t^{3/2}

    Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration

    Get PDF
    Invasion fronts in ecology are well studied but very few mathematical results concern the case with variable motility (possibly due to mutations). Based on an apparently simple reaction-diffusion equation, we explain the observed phenomena of front acceleration (when the motility is unbounded) as well as other quantitative results, such as the selection of the most motile individuals (when the motility is bounded). The key argument for the construction and analysis of traveling fronts is the derivation of the dispersion relation linking the speed of the wave and the spatial decay. When the motility is unbounded we show that the position of the front scales as t3/2t^{3/2}. When the mutation rate is low we show that the canonical equation for the dynamics of the fittest trait should be stated as a PDE in our context. It turns out to be a type of Burgers equation with source term.Comment: 7 page

    Non-Markovian Random Walks and Non-Linear Reactions: Subdiffusion and Propagating Fronts

    Full text link
    We propose a reaction-transport model for CTRW with non-linear reactions and non-exponential waiting time distributions. We derive non-linear evolution equation for mesoscopic density of particles. We apply this equation to the problem of fronts propagation into unstable state of reaction-transport systems with anomalous diffusion. We have found an explicit expression for the speed of propagating front in the case of subdiffusion transport.Comment: 7 page

    Hyperbolic traveling waves driven by growth

    Get PDF
    We perform the analysis of a hyperbolic model which is the analog of the Fisher-KPP equation. This model accounts for particles that move at maximal speed ϔ−1\epsilon^{-1} (\epsilon\textgreater{}0), and proliferate according to a reaction term of monostable type. We study the existence and stability of traveling fronts. We exhibit a transition depending on the parameter Ï”\epsilon: for small Ï”\epsilon the behaviour is essentially the same as for the diffusive Fisher-KPP equation. However, for large Ï”\epsilon the traveling front with minimal speed is discontinuous and travels at the maximal speed ϔ−1\epsilon^{-1}. The traveling fronts with minimal speed are linearly stable in weighted L2L^2 spaces. We also prove local nonlinear stability of the traveling front with minimal speed when Ï”\epsilon is smaller than the transition parameter.Comment: 24 page

    Super-linear spreading in local and non-local cane toads equations

    Get PDF
    In this paper, we show super-linear propagation in a nonlocal reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia that has attracted attention recently from the mathematical point of view. The population of toads is structured by a phenotypical trait that governs the spatial diffusion. In this paper, we are concerned with the case when the diffusivity can take unbounded values, and we prove that the population spreads as t3/2t^{3/2}. We also get the sharp rate of spreading in a related local model

    A non-linear degenerate equation for direct aggregation and traveling wave dynamics

    Get PDF
    The gregarious behavior of individuals of populations is an important factor in avoiding predators or for reproduction. Here, by using a random biased walk approach, we build a model which, after a transformation, takes the general form [u_{t}=[D(u)u_{x}]_{x}+g(u)] . The model involves a density-dependent non-linear diffusion coefficient [D] whose sign changes as the population density [u] increases. For negative values of [D] aggregation occurs, while dispersion occurs for positive values of [D] . We deal with a family of degenerate negative diffusion equations with logistic-like growth rate [g] . We study the one-dimensional traveling wave dynamics for these equations and illustrate our results with a couple of examples. A discussion of the ill-posedness of the partial differential equation problem is included
    • 

    corecore