479,332 research outputs found
Capturing self-propelled particles in a moving microwedge
Catching fish with a fishing net is typically done either by dragging a
fishing net through quiescent water or by placing a stationary basket trap into
a stream. We transfer these general concepts to micron-sized self-motile
particles moving in a solvent at low Reynolds number and study their collective
trapping behaviour by means of computer simulations of a two-dimensional system
of self-propelled rods. A chevron-shaped obstacle is dragged through the active
suspension with a constant speed and acts as a trapping "net". Three
trapping states can be identified corresponding to no trapping, partial
trapping and complete trapping and their relative stability is studied as a
function of the apex angle of the wedge, the swimmer density and the drag speed
. When the net is dragged along the inner wedge, complete trapping is
facilitated and a partially trapped state changes into a complete trapping
state if the drag speed exceeds a certain value. Reversing the drag direction
leads to a reentrant transition from no trapping, complete trapping, back to no
trapping upon increasing the drag speed along the outer wedge contour. The
transition to complete trapping is marked by a templated self-assembly of rods
forming polar smectic structures anchored onto the inner contour of the wedge.
Our predictions can be verified in experiments of artificial or microbial
swimmers confined in microfluidic trapping devices.Comment: 10 pages, 6 figure
Trapping effects on inflation
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
Semiclassical resolvent estimates at trapped sets
We extend our recent results on propagation of semiclassical resolvent
estimates through trapped sets when a priori polynomial resolvent bounds hold.
Previously we obtained non-trapping estimates in trapping situations when the
resolvent was sandwiched between cutoffs microlocally supported away from the
trapping, a microlocal version of a result of Burq and Cardoso-Vodev. We now
allow one of the two cutoffs to be supported at the trapped set, giving
estimates which are intermediate between the trapping and non-trapping ones.Comment: 5 page
High resolution threshold photoelectron spectroscopy by electron attachment
A system is provided for determining the stable energy levels of a species ion, of an atomic, molecular, or radical type, by application of ionizing energy of a predetermined level, such as through photoionization. The system adds a trapping gas to the gaseous species to provide a technique for detection of the energy levels. The electrons emitted from ionized species are captured by the trapping gas, only if the electrons have substantially zero kinetic energy. If the electrons have nearly zero energy, they are absorbed by the trapping gas to produce negative ions of the trapping gas that can be detected by a mass spectrometer. The applied energies (i.e. light frequencies) at which large quantities of trapping gas ions are detected, are the stable energy levels of the positive ion of the species. SF6 and CFCl3 have the narrowest acceptance bands, so that when they are used as the trapping gas, they bind electrons only when the electrons have very close to zero kinetic energy
Check-hybrid GLDPC Codes: Systematic Elimination of Trapping Sets and Guaranteed Error Correction Capability
In this paper, we propose a new approach to construct a class of check-hybrid
generalized low-density parity-check (CH-GLDPC) codes which are free of small
trapping sets. The approach is based on converting some selected check nodes
involving a trapping set into super checks corresponding to a 2-error
correcting component code. Specifically, we follow two main purposes to
construct the check-hybrid codes; first, based on the knowledge of the trapping
sets of the global LDPC code, single parity checks are replaced by super checks
to disable the trapping sets. We show that by converting specified single check
nodes, denoted as critical checks, to super checks in a trapping set, the
parallel bit flipping (PBF) decoder corrects the errors on a trapping set and
hence eliminates the trapping set. The second purpose is to minimize the rate
loss caused by replacing the super checks through finding the minimum number of
such critical checks. We also present an algorithm to find critical checks in a
trapping set of column-weight 3 LDPC code and then provide upper bounds on the
minimum number of such critical checks such that the decoder corrects all error
patterns on elementary trapping sets. Moreover, we provide a fixed set for a
class of constructed check-hybrid codes. The guaranteed error correction
capability of the CH-GLDPC codes is also studied. We show that a CH-GLDPC code
in which each variable node is connected to 2 super checks corresponding to a
2-error correcting component code corrects up to 5 errors. The results are also
extended to column-weight 4 LDPC codes. Finally, we investigate the eliminating
of trapping sets of a column-weight 3 LDPC code using the Gallager B decoding
algorithm and generalize the results obtained for the PBF for the Gallager B
decoding algorithm
Trapping of Rydberg Atoms in Tight Magnetic Microtraps
We explore the possibility to trap Rydberg atoms in tightly confining
magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to
be influenced strongly by magnetic field gradients. We show that there are
regimes where Rydberg atoms can be trapped. Moreover, we show that so-called
magic trapping conditions can be found for certain states of rubidium, where
both Rydberg atoms and ground state atoms have the same trapping frequencies.
Magic trapping is highly beneficial for implementing quantum gate operations
that require long operation times
- …
