3,425 research outputs found

    Continuum Mechanics and Thermodynamics in the Hamilton and the Godunov-type Formulations

    Full text link
    Continuum mechanics with dislocations, with the Cattaneo type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov type system of the first order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov type formulation brings the mathematical rigor (the well-posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization)

    Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved Hamiltonian dynamics

    Get PDF
    A new method of deriving reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a set of resolved variables that define a model reduction, the quasi-equilibrium ensembles associated with the resolved variables are employed as a family of trial probability densities on phase space. The residual that results from submitting these trial densities to the Liouville equation is quantified by an ensemble-averaged cost function related to the information loss rate of the reduction. From an initial nonequilibrium state, the statistical state of the system at any later time is estimated by minimizing the time integral of the cost function over paths of trial densities. Statistical closure of the underresolved dynamics is obtained at the level of the value function, which equals the optimal cost of reduction with respect to the resolved variables, and the evolution of the estimated statistical state is deduced from the Hamilton-Jacobi equation satisfied by the value function. In the near-equilibrium regime, or under a local quadratic approximation in the far-from-equilibrium regime, this best-fit closure is governed by a differential equation for the estimated state vector coupled to a Riccati differential equation for the Hessian matrix of the value function. Since memory effects are not explicitly included in the trial densities, a single adjustable parameter is introduced into the cost function to capture a time-scale ratio between resolved and unresolved motions. Apart from this parameter, the closed equations for the resolved variables are completely determined by the underlying deterministic dynamics
    • …
    corecore