3,242 research outputs found

    Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters

    Full text link
    In a cooperative multiple-antenna downlink cellular network, maximization of a concave function of user rates is considered. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming. All base stations share channel state information, but each user's message is only routed to those that participate in the user's coordination cluster. SIN precoding is particularly useful when clusters of limited sizes overlap in the network, in which case traditional techniques such as dirty paper coding or ZF do not directly apply. The SIN precoder is computed by solving a sequence of convex optimization problems. SIN under partial network coordination can outperform ZF under full network coordination at moderate SNRs. Under overlapping coordination clusters, SIN precoding achieves considerably higher throughput compared to myopic ZF, especially when the clusters are large.Comment: 13 pages, 5 figure

    Adaptive Bit Partitioning for Multicell Intercell Interference Nulling with Delayed Limited Feedback

    Full text link
    Base station cooperation can exploit knowledge of the users' channel state information (CSI) at the transmitters to manage co-channel interference. Users have to feedback CSI of the desired and interfering channels using finite-bandwidth backhaul links. Existing codebook designs for single-cell limited feedback can be used for multicell cooperation by partitioning the available feedback resources between the multiple channels. In this paper, a new feedback-bit allocation strategy is proposed, as a function of the delays in the communication links and received signal strengths in the downlink. Channel temporal correlation is modeled as a function of delay using the Gauss-Markov model. Closed-form expressions for bit partitions are derived to allocate more bits to quantize the stronger channels with smaller delays and fewer bits to weaker channels with larger delays, assuming random vector quantization. Cellular network simulations are used to show that the proposed algorithm yields higher sum-rates than an equal-bit allocation technique.Comment: Submitted to IEEE Transactions on Signal Processing, July 201

    Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints

    Full text link
    Block diagonalization (BD) is a practical linear precoding technique that eliminates the inter-user interference in downlink multiuser multiple-input multiple-output (MIMO) systems. In this paper, we apply BD to the downlink transmission in a cooperative multi-cell MIMO system, where the signals from different base stations (BSs) to all the mobile stations (MSs) are jointly designed with the perfect knowledge of the downlink channels and transmit messages. Specifically, we study the optimal BD precoder design to maximize the weighted sum-rate of all the MSs subject to a set of per-BS power constraints. This design problem is formulated in an auxiliary MIMO broadcast channel (BC) with a set of transmit power constraints corresponding to those for individual BSs in the multi-cell system. By applying convex optimization techniques, this paper develops an efficient algorithm to solve this problem, and derives the closed-form expression for the optimal BD precoding matrix. It is revealed that the optimal BD precoding vectors for each MS in the per-BS power constraint case are in general non-orthogonal, which differs from the conventional orthogonal BD precoder design for the MIMO-BC under one single sum-power constraint. Moreover, for the special case of single-antenna BSs and MSs, the proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF) precoder design for the weighted sum-rate maximization in the multiple-input single-output (MISO) BC with per-antenna power constraints. Suboptimal and low-complexity BD/ZF-BF precoding schemes are also presented, and their achievable rates are compared against those with the optimal schemes.Comment: accepted in JSAC, special issue on cooperative communications on cellular networks, June 201

    Downlink Noncoherent Cooperation without Transmitter Phase Alignment

    Full text link
    Multicell joint processing can mitigate inter-cell interference and thereby increase the spectral efficiency of cellular systems. Most previous work has assumed phase-aligned (coherent) transmissions from different base transceiver stations (BTSs), which is difficult to achieve in practice. In this work, a noncoherent cooperative transmission scheme for the downlink is studied, which does not require phase alignment. The focus is on jointly serving two users in adjacent cells sharing the same resource block. The two BTSs partially share their messages through a backhaul link, and each BTS transmits a superposition of two codewords, one for each receiver. Each receiver decodes its own message, and treats the signals for the other receiver as background noise. With narrowband transmissions the achievable rate region and maximum achievable weighted sum rate are characterized by optimizing the power allocation (and the beamforming vectors in the case of multiple transmit antennas) at each BTS between its two codewords. For a wideband (multicarrier) system, a dual formulation of the optimal power allocation problem across sub-carriers is presented, which can be efficiently solved by numerical methods. Results show that the proposed cooperation scheme can improve the sum rate substantially in the low to moderate signal-to-noise ratio (SNR) range.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    Energy Efficient Coordinated Beamforming for Multi-cell MISO Systems

    Full text link
    In this paper, we investigate the optimal energy efficient coordinated beamforming in multi-cell multiple-input single-output (MISO) systems with KK multiple-antenna base stations (BS) and KK single-antenna mobile stations (MS), where each BS sends information to its own intended MS with cooperatively designed transmit beamforming. We assume single user detection at the MS by treating the interference as noise. By taking into account a realistic power model at the BS, we characterize the Pareto boundary of the achievable energy efficiency (EE) region of the KK links, where the EE of each link is defined as the achievable data rate at the MS divided by the total power consumption at the BS. Since the EE of each link is non-cancave (which is a non-concave function over an affine function), characterizing this boundary is difficult. To meet this challenge, we relate this multi-cell MISO system to cognitive radio (CR) MISO channels by applying the concept of interference temperature (IT), and accordingly transform the EE boundary characterization problem into a set of fractional concave programming problems. Then, we apply the fractional concave programming technique to solve these fractional concave problems, and correspondingly give a parametrization for the EE boundary in terms of IT levels. Based on this characterization, we further present a decentralized algorithm to implement the multi-cell coordinated beamforming, which is shown by simulations to achieve the EE Pareto boundary.Comment: 6 pages, 2 figures, to be presented in IEEE GLOBECOM 201

    Coordinated Multicast Beamforming in Multicell Networks

    Full text link
    We study physical layer multicasting in multicell networks where each base station, equipped with multiple antennas, transmits a common message using a single beamformer to multiple users in the same cell. We investigate two coordinated beamforming designs: the quality-of-service (QoS) beamforming and the max-min SINR (signal-to-interference-plus-noise ratio) beamforming. The goal of the QoS beamforming is to minimize the total power consumption while guaranteeing that received SINR at each user is above a predetermined threshold. We present a necessary condition for the optimization problem to be feasible. Then, based on the decomposition theory, we propose a novel decentralized algorithm to implement the coordinated beamforming with limited information sharing among different base stations. The algorithm is guaranteed to converge and in most cases it converges to the optimal solution. The max-min SINR (MMS) beamforming is to maximize the minimum received SINR among all users under per-base station power constraints. We show that the MMS problem and a weighted peak-power minimization (WPPM) problem are inverse problems. Based on this inversion relationship, we then propose an efficient algorithm to solve the MMS problem in an approximate manner. Simulation results demonstrate significant advantages of the proposed multicast beamforming algorithms over conventional multicasting schemes.Comment: 10pages, 9 figure
    corecore