2 research outputs found

    LGTBIDS: Layer-wise Graph Theory Based Intrusion Detection System in Beyond 5G

    Full text link
    The advancement in wireless communication technologies is becoming more demanding and pervasive. One of the fundamental parameters that limit the efficiency of the network are the security challenges. The communication network is vulnerable to security attacks such as spoofing attacks and signal strength attacks. Intrusion detection signifies a central approach to ensuring the security of the communication network. In this paper, an Intrusion Detection System based on the framework of graph theory is proposed. A Layerwise Graph Theory-Based Intrusion Detection System (LGTBIDS) algorithm is designed to detect the attacked node. The algorithm performs the layer-wise analysis to extract the vulnerable nodes and ultimately the attacked node(s). For each layer, every node is scanned for the possibility of susceptible node(s). The strategy of the IDS is based on the analysis of energy efficiency and secrecy rate. The nodes with the energy efficiency and secrecy rate beyond the range of upper and lower thresholds are detected as the nodes under attack. Further, detected node(s) are transmitted with a random sequence of bits followed by the process of re-authentication. The obtained results validate the better performance, low time computations, and low complexity. Finally, the proposed approach is compared with the conventional solution of intrusion detection.Comment: in IEEE Transactions on Network and Service Management, 202

    Transmission-order optimization for bidirectional device-to-device (D2D) communications underlaying cellular TDD networks—A graph theoretic approach

    No full text
    Uykan, Zekeriya (Dogus Author) -- Jantti, Riku (Dogus Author)Device-to-device (D2D) communications underlaying cellular networks is a promising concept that has several advantages over the traditional cellular networks. In the TDD system, the frame structure defines the order of uplink and downlink transmission slots. Typically, a TDD system is synchronized, and the same transmission order (TO) is used in all cells. In a direct D2D link, we have the freedom of selecting the TO of the devices freely. To our best knowledge, no paper has explicitly examined the TO optimization problem in D2D communications underlaying cellular network so far. In this paper, we focus exactly on this problem: once the proper co-channel D2D pairs are determined in the network, how do we minimize the network interference by optimally determining the TOs in all D2D links (together with co-channel cellular links) in the network, which is an NP-complete problem. In this paper, we formulate the TO optimization problem from a graph theoretic point of view: 1) we show that the TO optimization problem is equal to a constraint balanced min-cut graph partitioning problem of our defined augmented graph; and 2) we propose and analyze a distributed and a centralized efficient asynchronous clustering algorithm for solving the TO optimization probleme quivalently for themin-cut of our proposed augmented graph. Computer simulations for the TDD-based D2D underlaying cellular network show that the proposed distributed and centralized algorithms, called ABCAMiC and CABCAMiC, respectively, 1) remarkably outperform the reference case where all TOs are fixed, 2) converge within a relatively small number of steps and generally converge in only a few epochs even for a large number of cellular and D2D users, and 3) the expected performance of the (partly/fully) distributed ABCAMiC is almost equal to that of the centralized solution CABCAMiC, which generally gives near-global optimal solution to the TO optimization problem
    corecore