3,905 research outputs found

    Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    Get PDF
    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures

    Dynamic operability assessment : a mathematical programming approach based on Q-parametrization

    Get PDF
    Bibliography: pages 197-208.The ability of a process plant to guarantee high product quality, in terms of low variability, is emerging as a defining feature when distinguishing between alternative suppliers. The extent to which this can be achieved is termed a plant's dynamic operability and is a function of both the plant design and the control system design. In the limit, however, the closedloop performance is determined by the properties inherent in the plant. This realization of the interrelationship between a plant design and its achievable closed-loop performance has motivated research toward systematic techniques for screening inherently inferior designs. Pioneering research in the early 1980's identified right-half-plane transmission zeros, time delays, input constraints and model uncertainty as factors that limit the achievable closedloop performance of a process. Quantifying the performance-limiting effect of combinations of these factors has proven to be a challenging problem, as reflected in the literature. It is the aim of this thesis to develop a systematic procedure for dynamic operability assessment in the presence of combinations of performance-limiting factors. The approach adopted in this thesis is based on the Q-parametrization of stabilizing linear feedback controllers and involves posing dynamic operability assessment as a mathematical programming problet? In the proposed formulation, a convex objective function, reflecting a measure of closed-loop performance, is optimized over all stable Q, subject. to a set of constraints on the closed-loop behavior, which for many specifications of interest is convex. A discrete-time formulation is chosen so as to allow for the convenient hand.ling of time delays and time-domain constraints. An important feature of the approach is that, due to the convexity, global optimality is guaranteed. Furthermore, the fact that Q parametrizes all stabilizing linear feedback controllers implies that the performance at the optimum represents the best possible performance for any such controller. The results are thus not biased by controller type or tuning, apart from the requirement that the controller be linear

    A computational approach for cam size optimization of disc cam-follower mechanisms with translating roller followers

    Get PDF
    The main objective of this work is to present a computational approach for design optimization of disc cam mechanisms with eccentric translating roller followers. For this purpose, the objective function defined here takes into account the three major parameters that influence the final cam size, namely the base circle radius of the cam, the radius of the roller and the offset of the follower. Furthermore, geometric constraints related to the maximum pressure angle and minimum radius of curvature are included to ensure good working conditions of the system. Finally, an application example is presented and used to discuss the main assumptions and procedure adopted throughout this work.Fundação para a Ciência e a Tecnologia (FCT

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed

    Implementation Challenges for Multivariable Control: What You Did Not Learn in School

    Get PDF
    Multivariable control allows controller designs that can provide decoupled command tracking and robust performance in the presence of modeling uncertainties. Although the last two decades have seen extensive development of multivariable control theory and example applications to complex systems in software/hardware simulations, there are no production flying systems aircraft or spacecraft, that use multivariable control. This is because of the tremendous challenges associated with implementation of such multivariable control designs. Unfortunately, the curriculum in schools does not provide sufficient time to be able to provide an exposure to the students in such implementation challenges. The objective of this paper is to share the lessons learned by a practitioner of multivariable control in the process of applying some of the modern control theory to the Integrated Flight Propulsion Control (IFPC) design for an advanced Short Take-Off Vertical Landing (STOVL) aircraft simulation

    On Limitations to the achievable path following performance for linear multivariable plants

    Get PDF
    In this paper, we consider a problem termed “path following”. This differs from the common problem of reference tracking, in that here we can adjust the speed at which we traverse the reference trajectory. We are interested in ascertaining the degree to which we can track a given trajectory, and in characterizing the class of paths for which we can generate an appropriate temporal specification so that the path can be tracked arbitrarily well in an L2 sense.We give various bounds on the achievable performance, as well as tight results in special cases. In addition, we give a numerical procedure based on convex optimization for computing the achievable performance. The results demonstrate that there are situations where arbitrarily good L2 performance may be achieved even though the origin is not in the convex hull of the positive limit set of the path to be followed
    corecore