22,794 research outputs found

    Transmission Schemes based on Sum Rate Analysis in Distributed Antenna Systems

    Full text link
    In this paper, we study single cell multi-user downlink distributed antenna systems (DAS) where antenna ports are geographically separated in a cell. First, we derive an expression of the ergodic sum rate for the DAS in the presence of pathloss. Then, we propose a transmission selection scheme based on the derived expressions which does not require channel state information at the transmitter. Utilizing the knowledge of distance information from a user to each distributed antenna (DA) port, we consider the optimization of pairings of DA ports and users to maximize the system performance. Based on the ergodic sum rate expressions, the proposed scheme chooses the best mode maximizing the ergodic sum rate among mode candidates. In our proposed scheme, the number of mode candidates are greatly reduced compared to that of ideal mode selection. In addition, we analyze the signal to noise ratio cross-over point for different modes using the sum rate expressions. Through Monte Carlo simulations, we show the accuracy of our derivations for the ergodic sum rate. Moreover, simulation results with the pathloss modeling confirm that the proposed scheme produces the average sum rate identical to the ideal mode selection with significantly reduced candidates.Comment: 25 pages, 8 figures, submitted to IEEE Transactions on Wireless Communications, May 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore