54,420 research outputs found

    Automated syntactic mediation for Web service integration

    No full text
    As the Web Services and Grid community adopt Semantic Web technology, we observe a shift towards higher-level workflow composition and service discovery practices. While this provides excellent functionality to non-expert users, more sophisticated middleware is required to hide the details of service invocation and service integration. An investigation of a common Bioinformatics use case reveals that the execution of high-level workflow designs requires additional processing to harmonise syntactically incompatible service interfaces. In this paper, we present an architecture to support the automatic reconciliation of data formats in such Web Service worklflows. The mediation of data is driven by ontologies that encapsulate the information contained in heterogeneous data structures supplying a common, conceptual data representation. Data conversion is carried out by a Configurable Mediator component, consuming mappings between \xml schemas and \owl ontologies. We describe our system and give examples of our mapping language against the background of a Bioinformatics use case

    Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation

    Get PDF
    Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge

    LoLa: a modular ontology of logics, languages and translations

    Get PDF
    The Distributed Ontology Language (DOL), currently being standardised within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3, aims at providing a unified framework for (i) ontologies formalised in heterogeneous logics, (ii) modular ontologies, (iii) links between ontologies, and (iv) annotation of ontologies.\ud \ud This paper focuses on the LoLa ontology, which formally describes DOL's vocabulary for logics, ontology languages (and their serialisations), as well as logic translations. Interestingly, to adequately formalise the logical relationships between these notions, LoLa itself needs to be axiomatised heterogeneously---a task for which we choose DOL. Namely, we use the logic RDF for ABox assertions, OWL for basic axiomatisations of various modules concerning logics, languages, and translations, FOL for capturing certain closure rules that are not expressible in OWL (For the sake of tool availability it is still helpful not to map everything to FOL.), and circumscription for minimising the extension of concepts describing default translations

    The Distributed Ontology Language (DOL): Use Cases, Syntax, and Extensibility

    Full text link
    The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper presents the current state of DOL's standardization. It focuses on use cases where distributed ontologies enable interoperability and reusability. We demonstrate relevant features of the DOL syntax and semantics and explain how these integrate into existing knowledge engineering environments.Comment: Terminology and Knowledge Engineering Conference (TKE) 2012-06-20 to 2012-06-21 Madrid, Spai

    Institutionalising Ontology-Based Semantic Integration

    No full text
    We address what is still a scarcity of general mathematical foundations for ontology-based semantic integration underlying current knowledge engineering methodologies in decentralised and distributed environments. After recalling the first-order ontology-based approach to semantic integration and a formalisation of ontological commitment, we propose a general theory that uses a syntax-and interpretation-independent formulation of language, ontology, and ontological commitment in terms of institutions. We claim that our formalisation generalises the intuitive notion of ontology-based semantic integration while retaining its basic insight, and we apply it for eliciting and hence comparing various increasingly complex notions of semantic integration and ontological commitment based on differing understandings of semantics
    • 

    corecore