2 research outputs found

    Transience Bounds for Distributed Algorithms

    Get PDF
    International audienceA large variety of distributed systems, like some classical synchronizers, routers, or schedulers, have been shown to have a periodic behavior after an initial transient phase (Malka and Rajsbaum, WDAG 1991). In fact, each of these systems satisfies recurrence relations that turn out to be linear as soon as we consider max-plus or min-plus algebra. In this paper, we give a new proof that such systems are eventually periodic and a new upper bound on the length of the initial transient phase. Interestingly, this is the first asymptotically tight bound that is linear in the system size for various classes of systems. Another significant benefit of our approach lies in the straightforwardness of arguments: The proof is based on an easy convolution lemma borrowed from Nachtigall (Math. Method. Oper. Res. 46) instead of purely graph-theoretic arguments and involved path reductions found in all previous proofs

    Computational Techniques for Reachability Analysis of Max-Plus-Linear Systems ⋆

    Get PDF
    Abstract This work discusses a computational approach to reachability analysis of Max-Plus-Linear (MPL) systems, a class of discreteevent systems widely used in synchronization and scheduling applications. Given a set of initial states, we characterize and compute its "reach tube," namely the collection of set of reachable states (regarded step-wise as "reach sets"). By an alternative characterization of the MPL dynamics, we show that the exact computation of the reach sets can be performed quickly and compactly by manipulations of difference-bound matrices, and further derive worst-case bounds on the complexity of these operations. The approach is also extended to backward reachability analysis. The concepts and results are elucidated by a running example, and we further illustrate the performance of the approach by a numerical benchmark: the technique comfortably handles twenty-dimensional MPL systems (i.e., with twenty continuous state variables), and as such it outperforms the state-of-the-art alternative approaches in the literature
    corecore