224,162 research outputs found

    Machine Learning Applications in Estimating Transformer Loss of Life

    Full text link
    Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hourly estimation of the transformer loss of life. Among various machine learning methods for developing this static model, the Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical simulations demonstrate the effectiveness and the accuracy of the proposed ANFIS method compared with other relevant machine learning based methods to solve this problem.Comment: IEEE Power and Energy Society General Meeting, 201

    Segatron: Segment-Aware Transformer for Language Modeling and Understanding

    Full text link
    Transformers are powerful for sequence modeling. Nearly all state-of-the-art language models and pre-trained language models are based on the Transformer architecture. However, it distinguishes sequential tokens only with the token position index. We hypothesize that better contextual representations can be generated from the Transformer with richer positional information. To verify this, we propose a segment-aware Transformer (Segatron), by replacing the original token position encoding with a combined position encoding of paragraph, sentence, and token. We first introduce the segment-aware mechanism to Transformer-XL, which is a popular Transformer-based language model with memory extension and relative position encoding. We find that our method can further improve the Transformer-XL base model and large model, achieving 17.1 perplexity on the WikiText-103 dataset. We further investigate the pre-training masked language modeling task with Segatron. Experimental results show that BERT pre-trained with Segatron (SegaBERT) can outperform BERT with vanilla Transformer on various NLP tasks, and outperforms RoBERTa on zero-shot sentence representation learning.Comment: Accepted by AAAI 202
    corecore