2,152 research outputs found

    Transformer based unsupervised pre-training for acoustic representation learning

    Full text link
    Recently, a variety of acoustic tasks and related applications arised. For many acoustic tasks, the labeled data size may be limited. To handle this problem, we propose an unsupervised pre-training method using Transformer based encoder to learn a general and robust high-level representation for all acoustic tasks. Experiments have been conducted on three kinds of acoustic tasks: speech emotion recognition, sound event detection and speech translation. All the experiments have shown that pre-training using its own training data can significantly improve the performance. With a larger pre-training data combining MuST-C, Librispeech and ESC-US datasets, for speech emotion recognition, the UAR can further improve absolutely 4.3% on IEMOCAP dataset. For sound event detection, the F1 score can further improve absolutely 1.5% on DCASE2018 task5 development set and 2.1% on evaluation set. For speech translation, the BLEU score can further improve relatively 12.2% on En-De dataset and 8.4% on En-Fr dataset.Comment: Accepted by ICASSP 202

    Effectiveness of self-supervised pre-training for speech recognition

    Full text link
    We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data

    A Further Study of Unsupervised Pre-training for Transformer Based Speech Recognition

    Full text link
    Building a good speech recognition system usually requires large amounts of transcribed data, which is expensive to collect. To tackle this problem, many unsupervised pre-training methods have been proposed. Among these methods, Masked Predictive Coding achieved significant improvements on various speech recognition datasets with BERT-like Masked Reconstruction loss and Transformer backbone. However, many aspects of MPC have not been fully investigated. In this paper, we conduct a further study on MPC and focus on three important aspects: the effect of pre-training data speaking style, its extension on streaming model, and how to better transfer learned knowledge from pre-training stage to downstream tasks. Experiments reveled that pre-training data with matching speaking style is more useful on downstream recognition tasks. A unified training objective with APC and MPC provided 8.46% relative error reduction on streaming model trained on HKUST. Also, the combination of target data adaption and layer-wise discriminative training helped the knowledge transfer of MPC, which achieved 3.99% relative error reduction on AISHELL over a strong baseline

    Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio Representation

    Full text link
    For self-supervised speech processing, it is crucial to use pretrained models as speech representation extractors. In recent works, increasing the size of the model has been utilized in acoustic model training in order to achieve better performance. In this paper, we propose Audio ALBERT, a lite version of the self-supervised speech representation model. We use the representations with two downstream tasks, speaker identification, and phoneme classification. We show that Audio ALBERT is capable of achieving competitive performance with those huge models in the downstream tasks while utilizing 91\% fewer parameters. Moreover, we use some simple probing models to measure how much the information of the speaker and phoneme is encoded in latent representations. In probing experiments, we find that the latent representations encode richer information of both phoneme and speaker than that of the last layer.Comment: Accepted by IEEE Spoken Language Technology Workshop 202

    wav2vec: Unsupervised Pre-training for Speech Recognition

    Full text link
    We explore unsupervised pre-training for speech recognition by learning representations of raw audio. wav2vec is trained on large amounts of unlabeled audio data and the resulting representations are then used to improve acoustic model training. We pre-train a simple multi-layer convolutional neural network optimized via a noise contrastive binary classification task. Our experiments on WSJ reduce WER of a strong character-based log-mel filterbank baseline by up to 36% when only a few hours of transcribed data is available. Our approach achieves 2.43% WER on the nov92 test set. This outperforms Deep Speech 2, the best reported character-based system in the literature while using two orders of magnitude less labeled training data

    Improving Unsupervised Sparsespeech Acoustic Models with Categorical Reparameterization

    Full text link
    The Sparsespeech model is an unsupervised acoustic model that can generate discrete pseudo-labels for untranscribed speech. We extend the Sparsespeech model to allow for sampling over a random discrete variable, yielding pseudo-posteriorgrams. The degree of sparsity in this posteriorgram can be fully controlled after the model has been trained. We use the Gumbel-Softmax trick to approximately sample from a discrete distribution in the neural network and this allows us to train the network efficiently with standard backpropagation. The new and improved model is trained and evaluated on the Libri-Light corpus, a benchmark for ASR with limited or no supervision. The model is trained on 600h and 6000h of English read speech. We evaluate the improved model using the ABX error measure and a semi-supervised setting with 10h of transcribed speech. We observe a relative improvement of up to 31.4% on ABX error rates across speakers on the test set with the improved Sparsespeech model on 600h of speech data and further improvements when we scale the model to 6000h

    HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units

    Full text link
    Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets

    Masked Pre-trained Encoder base on Joint CTC-Transformer

    Full text link
    This study (The work was accomplished during the internship in Tencent AI lab) addresses semi-supervised acoustic modeling, i.e. attaining high-level representations from unsupervised audio data and fine-tuning the parameters of pre-trained model with supervised data. The proposed approach adopts a two-stage training framework, consisting of masked pre-trained encoder (MPE) and Joint CTC-Transformer (JCT). In the MPE framework, part of input frames are masked and reconstructed after the encoder with massive unsupervised data. In JCT framework, compared with original Transformer, acoustic features are applied as input instead of plain text. CTC loss performs as the prediction target on top of the encoder, and decoder blocks remain unchanged. This paper presents a comparison between two-stage training method and the fully supervised JCT. In addition, this paper investigates the our approach's robustness against different volumns of training data. Experiments on the two-stage training method deliver much better performance than fully supervised model. The word error rate (WER) with two-stage training which only exploits 30\% of WSJ labeled data achieves 17\% reduction than which trained by 50\% of WSJ in a fully supervised way. Moreover, increasing unlabeled data for MPE from WSJ (81h) to Librispeech (960h) attains about 22\% WER reduction

    NAUTILUS: a Versatile Voice Cloning System

    Full text link
    We introduce a novel speech synthesis system, called NAUTILUS, that can generate speech with a target voice either from a text input or a reference utterance of an arbitrary source speaker. By using a multi-speaker speech corpus to train all requisite encoders and decoders in the initial training stage, our system can clone unseen voices using untranscribed speech of target speakers on the basis of the backpropagation algorithm. Moreover, depending on the data circumstance of the target speaker, the cloning strategy can be adjusted to take advantage of additional data and modify the behaviors of text-to-speech (TTS) and/or voice conversion (VC) systems to accommodate the situation. We test the performance of the proposed framework by using deep convolution layers to model the encoders, decoders and WaveNet vocoder. Evaluations show that it achieves comparable quality with state-of-the-art TTS and VC systems when cloning with just five minutes of untranscribed speech. Moreover, it is demonstrated that the proposed framework has the ability to switch between TTS and VC with high speaker consistency, which will be useful for many applications.Comment: Submitted to The IEEE/ACM Transactions on Audio, Speech, and Language Processin

    TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech

    Full text link
    We introduce a self-supervised speech pre-training method called TERA, which stands for Transformer Encoder Representations from Alteration. Recent approaches often learn through the formulation of a single auxiliary task like contrastive prediction, autoregressive prediction, or masked reconstruction. Unlike previous approaches, we use a multi-target auxiliary task to pre-train Transformer Encoders on a large amount of unlabeled speech. The model learns through the reconstruction of acoustic frames from its altered counterpart, where we use a stochastic policy to alter along three dimensions: temporal, channel, and magnitude. TERA can be used to extract speech representations or fine-tune with downstream models. We evaluate TERA on several downstream tasks, including phoneme classification, speaker recognition, and speech recognition. TERA achieved strong performance on these tasks by improving upon surface features and outperforming previous methods. In our experiments, we show that through alteration along different dimensions, the model learns to encode distinct aspects of speech. We explore different knowledge transfer methods to incorporate the pre-trained model with downstream models. Furthermore, we show that the proposed method can be easily transferred to another dataset not used in pre-training.Comment: Submitted to IEEE/ACM TASLP, under revie
    • …
    corecore