2 research outputs found

    Wavelet Domain Communication System (WDCS): Packet-Based Wavelet Spectral Estimation and M-ARY Signaling

    Get PDF
    A recently proposed Wavelet Domain Communication System (WDCS) using transform domain processing demonstrated excellent interference avoidance capability under adverse environmental conditions. This work extends previous results by: 1) incorporating a wavelet packet decomposition technique, 2) demonstrating M-Ary signaling capability, and 3) providing increased adaptivity over a larger class of interference signals. The newly proposed packet-based WDCS is modeled and its performance characterized using MATLAB®. In addition, the WDCS response to two scenarios simulating Doppler effects and physical separation of transceivers are obtained. The fundamental metric for analysis and performance evaluation is bit error rate (Pb). Relative to the previous non-packet WDCS, the proposed packet-based WDCS provides improved/comparable bit error performance in several interference scenarios single-tone, multiple-tone, swept-tone, and partial band interference is considered. Interference avoidance capability was characterized for a bit energy-to-noise power level (Eb/N0) of 4.0 dB and interference energy-to-signal energy (I/E) ratios ranging from 0.0 dB to 16.0 dB. For binary, 4-Ary, and 8-Ary CSK data modulations, the packet-based WDCS exhibited average Pb improvements of 6.7, 9.2, and 12.0 dB, respectively, for partial band and swept-tone interference. For single and multiple-tone interference, improvements of 8.0, 12.4, and 15.7 dB were realized. Furthermore, bit error sensitivity analyses indicate the WDCS communicates effectively under non-ideal real-world conditions (transceivers located in dissimilar environments) while exhibiting average Pb improvements of 5.4, 5.1, and 5.8 dB, relative to systems having no interference suppression

    Data transmission oriented on the object, communication media, application, and state of communication systems tactical communication system application

    Get PDF
    A proposed communication system architecture is denoted TOMAS, which stands for data Transmission oriented on the Object, communication Media, Application, and state of communication Systems. Given particular tactical communication system scenarios of image transmission over a wireless LOS (Line-of-Sight) channel, a wireless TOMAS system demonstrates superior performance compared to the conventional system, which is a combination of JPEG2000 image compression and OFDM transmission, in restored image quality parameters over a wide range of wireless channel parameters. The wireless TOMAS system provides progressive lossless image transmission under the influence of moderate fading without any kind of channel coding and estimation. The TOMAS system employs a fast proprietary patent pending algorithm Sabelkin (2011), which does not employ any multiplications, and it uses three times less real additions than the algorithm of JPEG2000+OFDM. The TOMAS system exploits a specialized wavelet transform combined for image coding and channel modulation
    corecore