6,372 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Dictionary Learning for Sparse Representations With Applications to Blind Source Separation.

    Get PDF
    During the past decade, sparse representation has attracted much attention in the signal processing community. It aims to represent a signal as a linear combination of a small number of elementary signals called atoms. These atoms constitute a dictionary so that a signal can be expressed by the multiplication of the dictionary and a sparse coefficients vector. This leads to two main challenges that are studied in the literature, i.e. sparse coding (find the coding coefficients based on a given dictionary) and dictionary design (find an appropriate dictionary to fit the data). Dictionary design is the focus of this thesis. Traditionally, the signals can be decomposed by the predefined mathematical transform, such as discrete cosine transform (DCT), which forms the so-called analytical approach. In recent years, learning-based methods have been introduced to adapt the dictionary from a set of training data, leading to the technique of dictionary learning. Although this may involve a higher computational complexity, learned dictionaries have the potential to offer improved performance as compared with predefined dictionaries. Dictionary learning algorithm is often achieved by iteratively executing two operations: sparse approximation and dictionary update. We focus on the dictionary update step, where the dictionary is optimized with a given sparsity pattern. A novel framework is proposed to generalize benchmark mechanisms such as the method of optimal directions (MOD) and K-SVD where an arbitrary set of codewords and the corresponding sparse coefficients are simultaneously updated, hence the term simultaneous codeword optimization (SimCO). Moreover, its extended formulation ‘regularized SimCO’ mitigates the major bottleneck of dictionary update caused by the singular points. First and second order optimization procedures are designed to solve the primitive and regularized SimCO. In addition, a tree-structured multi-level representation of dictionary based on clustering is used to speed up the optimization process in the sparse coding stage. This novel dictionary learning algorithm is also applied for solving the underdetermined blind speech separation problem, leading to a multi-stage method, where the separation problem is reformulated as a sparse coding problem, with the dictionary being learned by an adaptive algorithm. Using mutual coherence and sparsity index, the performance of a variety of dictionaries for underdetermined speech separation is compared and analyzed, such as the dictionaries learned from speech mixtures and ground truth speech sources, as well as those predefined by mathematical transforms. Finally, we propose a new method for joint dictionary learning and source separation. Different from the multistage method, the proposed method can simultaneously estimate the mixing matrix, the dictionary and the sources in an alternating and blind manner. The advantages of all the proposed methods are demonstrated over the state-of-the-art methods using extensive numerical tests

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies

    Get PDF
    Field robots encounter dynamic unstructured environments containing a vast array of unique objects. In order to make sense of the world in which they are placed, they collect large quantities of unlabelled data with a variety of sensors. Producing robust and reliable applications depends entirely on the ability of the robot to understand the unlabelled data it obtains. Deep Learning techniques have had a high level of success in learning powerful unsupervised representations for a variety of discriminative and generative models. Applying these techniques to problems encountered in field robotics remains a challenging endeavour. Modern Deep Learning methods are typically trained with a substantial labelled dataset, while datasets produced in a field robotics context contain limited labelled training data. The primary motivation for this thesis stems from the problem of applying large scale Deep Learning models to field robotics datasets that are label poor. While the lack of labelled ground truth data drives the desire for unsupervised methods, the need for improving the model scaling is driven by two factors, performance and computational requirements. When utilising unsupervised layer outputs as representations for classification, the classification performance increases with layer size. Scaling up models with multiple large layers of features is problematic, as the sizes of subsequent hidden layers scales with the size of the previous layer. This quadratic scaling, and the associated time required to train such networks has prevented adoption of large Deep Learning models beyond cluster computing. The contributions in this thesis are developed from the observation that parameters or filter el- ements learnt in Deep Learning systems are typically highly structured, and contain related ele- ments. Firstly, the structure of unsupervised filters is utilised to construct a mapping from the high dimensional filter space to a low dimensional manifold. This creates a significantly smaller repre- sentation for subsequent feature learning. This mapping, and its effect on the resulting encodings, highlights the need for the ability to learn highly overcomplete sets of convolutional features. Driven by this need, the unsupervised pretraining of Deep Convolutional Networks is developed to include a number of modern training and regularisation methods. These pretrained models are then used to provide initialisations for supervised convolutional models trained on low quantities of labelled data. By utilising pretraining, a significant increase in classification performance on a number of publicly available datasets is achieved. In order to apply these techniques to outdoor 3D Laser Illuminated Detection And Ranging data, we develop a set of resampling techniques to provide uniform input to Deep Learning models. The features learnt in these systems outperform the high effort hand engineered features developed specifically for 3D data. The representation of a given signal is then reinterpreted as a combination of modes that exist on the learnt low dimensional filter manifold. From this, we develop an encoding technique that allows the high dimensional layer output to be represented as a combination of low dimensional components. This allows the growth of subsequent layers to only be dependent on the intrinsic dimensionality of the filter manifold and not the number of elements contained in the previous layer. Finally, the resulting unsupervised convolutional model, the encoding frameworks and the em- bedding methodology are used to produce a new unsupervised learning stratergy that is able to encode images in terms of overcomplete filter spaces, without producing an explosion in the size of the intermediate parameter spaces. This model produces classification results on par with state of the art models, yet requires significantly less computational resources and is suitable for use in the constrained computation environment of a field robot

    A Computational Study Of The Role Of Spatial Receptive Field Structure In Processing Natural And Non-Natural Scenes

    Get PDF
    The center-surround receptive field structure, ubiquitous in the visual system, is hypothesized to be evolutionarily advantageous in image processing tasks. We address the potential functional benefits and shortcomings of spatial localization and center-surround antagonism in the context of an integrate-and-fire neuronal network model with image-based forcing. Utilizing the sparsity of natural scenes, we derive a compressive-sensing framework for input image reconstruction utilizing evoked neuronal firing rates. We investigate how the accuracy of input encoding depends on the receptive field architecture, and demonstrate that spatial localization in visual stimulus sampling facilitates marked improvements in natural scene processing beyond uniformly-random excitatory connectivity. However, for specific classes of images, we show that spatial localization inherent in physiological receptive fields combined with information loss through nonlinear neuronal network dynamics may underlie common optical illusions, giving a novel explanation for their manifestation. In the context of signal processing, we expect this work may suggest new sampling protocols useful for extending conventional compressive sensing theory
    corecore