99,098 research outputs found
Information compression in the context model
The Context Model provides a formal framework for the representation, interpretation, and analysis of vague and uncertain data. The clear semantics of the underlying concepts make it feasible to compare well-known approaches to the modeling of imperfect knowledge like that given in Bayes Theory, Shafer's Evidence Theory, the Transferable Belief Model, and Possibility Theory. In this paper we present the basic ideas of the Context Model and show its applicability as an alternative foundation of Possibility Theory and the epistemic view of fuzzy sets
Multispectral object segmentation and retrieval in surveillance video
This paper describes a system for object segmentation and feature extraction for surveillance video. Segmentation is performed by a dynamic vision system that fuses information from thermal infrared video with standard CCTV video in order to detect and track objects. Separate background modelling in each modality and dynamic mutual information based thresholding are used to provide initial foreground candidates for tracking. The belief in the validity of these candidates is ascertained using knowledge of foreground pixels and temporal linking of candidates. The transferable belief model is used to combine these sources of information and segment objects. Extracted objects are subsequently tracked using adaptive thermo-visual appearance models. In order to facilitate search and classification of objects in large archives, retrieval features from both modalities are extracted for tracked objects. Overall system performance is demonstrated in a simple retrieval scenari
Lymphocite segmentation using mixture of Gaussians and the transferable belief model.
International audienceIn the context of several pathologies, the presence of lym- phocytes has been correlated with disease outcome. The ability to au- tomatically detect lymphocyte nuclei on histopathology imagery could potentially result in the development of an image based prognostic tool. In this paper we present a method based on the estimation of a mixture of Gaussians for determining the probability distribution of the princi- pal image component. Then, a post-processing stage eliminates regions, whose shape is not similar to the nuclei searched. Finally, the Transfer- able Belief Model is used to detect the lymphocyte nuclei, and a shape based algorithm possibly splits them under an equal area and an eccen- tricity constraint principle
Generalized Evidence Theory
Conflict management is still an open issue in the application of Dempster
Shafer evidence theory. A lot of works have been presented to address this
issue. In this paper, a new theory, called as generalized evidence theory
(GET), is proposed. Compared with existing methods, GET assumes that the
general situation is in open world due to the uncertainty and incomplete
knowledge. The conflicting evidence is handled under the framework of GET. It
is shown that the new theory can explain and deal with the conflicting evidence
in a more reasonable way.Comment: 39 pages, 5 figure
- …
