2 research outputs found

    Transferable Neural Processes for Hyperparameter Optimization

    Full text link
    Automated machine learning aims to automate the whole process of machine learning, including model configuration. In this paper, we focus on automated hyperparameter optimization (HPO) based on sequential model-based optimization (SMBO). Though conventional SMBO algorithms work well when abundant HPO trials are available, they are far from satisfactory in practical applications where a trial on a huge dataset may be so costly that an optimal hyperparameter configuration is expected to return in as few trials as possible. Observing that human experts draw on their expertise in a machine learning model by trying configurations that once performed well on other datasets, we are inspired to speed up HPO by transferring knowledge from historical HPO trials on other datasets. We propose an end-to-end and efficient HPO algorithm named as Transfer Neural Processes (TNP), which achieves transfer learning by incorporating trials on other datasets, initializing the model with well-generalized parameters, and learning an initial set of hyperparameters to evaluate. Experiments on extensive OpenML datasets and three computer vision datasets show that the proposed model can achieve state-of-the-art performance in at least one order of magnitude less trials.Comment: 11 pages, 12 figure

    Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for Hyperparameter Recommendation

    Full text link
    With the surge in the number of hyperparameters and training times of modern machine learning models, hyperparameter tuning is becoming increasingly expensive. Although methods have been proposed to speed up tuning via knowledge transfer, they typically require the final performance of hyperparameters and do not focus on low-fidelity information. Nevertheless, this common practice is suboptimal and can incur an unnecessary use of resources. It is more cost-efficient to instead leverage the low-fidelity tuning observations to measure inter-task similarity and transfer knowledge from existing to new tasks accordingly. However, performing multi-fidelity tuning comes with its own challenges in the transfer setting: the noise in the additional observations and the need for performance forecasting. Therefore, we conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2). We further present an offline-computed 27-task hyperparameter recommendation (HyperRec) database to serve the community. Extensive experiments on HyperRec and other real-world databases illustrate the effectiveness of our AT2 method
    corecore