3 research outputs found

    Bandwidth Allocation Mechanism based on Users' Web Usage Patterns for Campus Networks

    Get PDF
    Managing the bandwidth in campus networks becomes a challenge in recent years. The limited bandwidth resource and continuous growth of users make the IT managers think on the strategies concerning bandwidth allocation. This paper introduces a mechanism for allocating bandwidth based on the users’ web usage patterns. The main purpose is to set a higher bandwidth to the users who are inclined to browsing educational websites compared to those who are not. In attaining this proposed technique, some stages need to be done. These are the preprocessing of the weblogs, class labeling of the dataset, computation of the feature subspaces, training for the development of the ANN for LDA/GSVD algorithm, visualization, and bandwidth allocation. The proposed method was applied to real weblogs from university’s proxy servers. The results indicate that the proposed method is useful in classifying those users who used the internet in an educational way and those who are not. Thus, the developed ANN for LDA/GSVD algorithm outperformed the existing algorithm up to 50% which indicates that this approach is efficient. Further, based on the results, few users browsed educational contents. Through this mechanism, users will be encouraged to use the internet for educational purposes. Moreover, IT managers can make better plans to optimize the distribution of bandwidth

    Transfer latent variable model based on divergence analysis

    No full text
    Latent variable models are powerful dimensionality reduction approaches in machine learning and pattern recognition. However, this kind of methods only works well under a necessary and strict assumption that the training samples and testing samples are independent and identically distributed. When the samples come from different domains, the distribution of the testing dataset will not be identical with the training dataset. Therefore, the performance of latent variable models will be degraded for the reason that the parameters of the training model do not suit for the testing dataset. This case limits the generalization and application of the traditional latent variable models. To handle this issue, a transfer learning framework for latent variable model is proposed which can utilize the distance (or divergence) of the two datasets to modify the parameters of the obtained latent variable model. So we do not need to rebuild the model and only adjust the parameters according to the divergence, which will adopt different datasets. Experimental results on several real datasets demonstrate the advantages of the proposed framework
    corecore