9 research outputs found

    Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

    Full text link
    The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.Comment: SIGIR 202

    Review-Based Domain Disentanglement without Duplicate Users or Contexts for Cross-Domain Recommendation

    Full text link
    A cross-domain recommendation has shown promising results in solving data-sparsity and cold-start problems. Despite such progress, existing methods focus on domain-shareable information (overlapped users or same contexts) for a knowledge transfer, and they fail to generalize well without such requirements. To deal with these problems, we suggest utilizing review texts that are general to most e-commerce systems. Our model (named SER) uses three text analysis modules, guided by a single domain discriminator for disentangled representation learning. Here, we suggest a novel optimization strategy that can enhance the quality of domain disentanglement, and also debilitates detrimental information of a source domain. Also, we extend the encoding network from a single to multiple domains, which has proven to be powerful for review-based recommender systems. Extensive experiments and ablation studies demonstrate that our method is efficient, robust, and scalable compared to the state-of-the-art single and cross-domain recommendation methods

    One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation

    Full text link
    Cross-domain recommendation is an important method to improve recommender system performance, especially when observations in target domains are sparse. However, most existing techniques focus on single-target or dual-target cross-domain recommendation (CDR) and are hard to be generalized to CDR with multiple target domains. In addition, the negative transfer problem is prevalent in CDR, where the recommendation performance in a target domain may not always be enhanced by knowledge learned from a source domain, especially when the source domain has sparse data. In this study, we propose CAT-ART, a multi-target CDR method that learns to improve recommendations in all participating domains through representation learning and embedding transfer. Our method consists of two parts: a self-supervised Contrastive AuToencoder (CAT) framework to generate global user embeddings based on information from all participating domains, and an Attention-based Representation Transfer (ART) framework which transfers domain-specific user embeddings from other domains to assist with target domain recommendation. CAT-ART boosts the recommendation performance in any target domain through the combined use of the learned global user representation and knowledge transferred from other domains, in addition to the original user embedding in the target domain. We conducted extensive experiments on a collected real-world CDR dataset spanning 5 domains and involving a million users. Experimental results demonstrate the superiority of the proposed method over a range of prior arts. We further conducted ablation studies to verify the effectiveness of the proposed components. Our collected dataset will be open-sourced to facilitate future research in the field of multi-domain recommender systems and user modeling.Comment: 9 pages, accepted by WSDM 202

    Cross-Market Product Recommendation

    Get PDF

    PEACE: Prototype lEarning Augmented transferable framework for Cross-domain rEcommendation

    Full text link
    To help merchants/customers to provide/access a variety of services through miniapps, online service platforms have occupied a critical position in the effective content delivery, in which how to recommend items in the new domain launched by the service provider for customers has become more urgent. However, the non-negligible gap between the source and diversified target domains poses a considerable challenge to cross-domain recommendation systems, which often leads to performance bottlenecks in industrial settings. While entity graphs have the potential to serve as a bridge between domains, rudimentary utilization still fail to distill useful knowledge and even induce the negative transfer issue. To this end, we propose PEACE, a Prototype lEarning Augmented transferable framework for Cross-domain rEcommendation. For domain gap bridging, PEACE is built upon a multi-interest and entity-oriented pre-training architecture which could not only benefit the learning of generalized knowledge in a multi-granularity manner, but also help leverage more structural information in the entity graph. Then, we bring the prototype learning into the pre-training over source domains, so that representations of users and items are greatly improved by the contrastive prototype learning module and the prototype enhanced attention mechanism for adaptive knowledge utilization. To ease the pressure of online serving, PEACE is carefully deployed in a lightweight manner, and significant performance improvements are observed in both online and offline environments.Comment: Accepted by WSDM 202

    Automated Prompting for Non-overlapping Cross-domain Sequential Recommendation

    Full text link
    Cross-domain Recommendation (CR) has been extensively studied in recent years to alleviate the data sparsity issue in recommender systems by utilizing different domain information. In this work, we focus on the more general Non-overlapping Cross-domain Sequential Recommendation (NCSR) scenario. NCSR is challenging because there are no overlapped entities (e.g., users and items) between domains, and there is only users' implicit feedback and no content information. Previous CR methods cannot solve NCSR well, since (1) they either need extra content to align domains or need explicit domain alignment constraints to reduce the domain discrepancy from domain-invariant features, (2) they pay more attention to users' explicit feedback (i.e., users' rating data) and cannot well capture their sequential interaction patterns, (3) they usually do a single-target cross-domain recommendation task and seldom investigate the dual-target ones. Considering the above challenges, we propose Prompt Learning-based Cross-domain Recommender (PLCR), an automated prompting-based recommendation framework for the NCSR task. Specifically, to address the challenge (1), PLCR resorts to learning domain-invariant and domain-specific representations via its prompt learning component, where the domain alignment constraint is discarded. For challenges (2) and (3), PLCR introduces a pre-trained sequence encoder to learn users' sequential interaction patterns, and conducts a dual-learning target with a separation constraint to enhance recommendations in both domains. Our empirical study on two sub-collections of Amazon demonstrates the advance of PLCR compared with some related SOTA methods

    CMML: Contextual Modulation Meta Learning for Cold-Start Recommendation

    Get PDF
    Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples. Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML). CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively. We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with higher computational efficiency and better interpretability
    corecore