115,554 research outputs found

    Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks

    Full text link
    Upcoming 5G-based communication networks will be confronted with huge increases in the amount of transmitted sensor data related to massive deployments of static and mobile Internet of Things (IoT) systems. Cars acting as mobile sensors will become important data sources for cloud-based applications like predictive maintenance and dynamic traffic forecast. Due to the limitation of available communication resources, it is expected that the grows in Machine-Type Communication (MTC) will cause severe interference with Human-to-human (H2H) communication. Consequently, more efficient transmission methods are highly required. In this paper, we present a probabilistic scheme for efficient transmission of vehicular sensor data which leverages favorable channel conditions and avoids transmissions when they are expected to be highly resource-consuming. Multiple variants of the proposed scheme are evaluated in comprehensive realworld experiments. Through machine learning based combination of multiple context metrics, the proposed scheme is able to achieve up to 164% higher average data rate values for sensor applications with soft deadline requirements compared to regular periodic transmission.Comment: Best Student Paper Awar

    Towards Data-driven Simulation of End-to-end Network Performance Indicators

    Full text link
    Novel vehicular communication methods are mostly analyzed simulatively or analytically as real world performance tests are highly time-consuming and cost-intense. Moreover, the high number of uncontrollable effects makes it practically impossible to reevaluate different approaches under the exact same conditions. However, as these methods massively simplify the effects of the radio environment and various cross-layer interdependencies, the results of end-to-end indicators (e.g., the resulting data rate) often differ significantly from real world measurements. In this paper, we present a data-driven approach that exploits a combination of multiple machine learning methods for modeling the end-to-end behavior of network performance indicators within vehicular networks. The proposed approach can be exploited for fast and close to reality evaluation and optimization of new methods in a controllable environment as it implicitly considers cross-layer dependencies between measurable features. Within an example case study for opportunistic vehicular data transfer, the proposed approach is validated against real world measurements and a classical system-level network simulation setup. Although the proposed method does only require a fraction of the computation time of the latter, it achieves a significantly better match with the real world evaluations

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

    Full text link
    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.Comment: Accepted to CVPR 2018; Code and data available at https://www.github.com/richzhang/PerceptualSimilarit
    corecore