3,255 research outputs found
Evalution of Transfection Methods for Transfection of COS-7 Cells
Cílem této práce je shrnout a v praxi ověřit možnosti transfekce buněk, které nabízí Ústav biomedicínckého inženýrství. Na COS-7 buněčné linii jsou porovnávány tyto transfekční reagenty: fosforečnan vápenatý, Fugene 6 a Fugene HD.The aim of this work is summarized potentialities of cells transfection in their practise, which offers the Department of biomedical engineering. On COS-7 cell line are compared to those transfection reagents: calcium phosphate, Fugen 6 and Fugen HD.
Expression in mammalian cells of a cloned gene encoding murine DNA methyltransferase
Mammalian DNA cytosine-5-methyltransferase (MTase, EC 2.1.1.37) is an essential component for establishing and maintaining cell-type specific methylation patterns in the genome. The cDNAfor the murine enzyme was previously cloned in segments. We have reconstructed the entire gene, encoding a protein of 1517 amino acids, from a set of overlapping CDNA clones. We report the assembly of two expression constructs in bacterial/mammalian shuttle vectors. Transcription in the first construct (pEMT) is driven by the cytomegalovirus enhancer/promoter and encodes a fusion protein with 15 additional aa at the N terminus, while the second construct (pJMT) is driven by the simian virus 40 early promoter/enhancer upstream from the natural ATG codon. Immunofluorescence microscopy and immunoblot analysis have shown that both constructs direct the synthesis of MTase in COS-1 cells. Enzyme activity in whole-cell lysates of transfected COS-1 cells transfected with pEMT and pJMT are on average tenfold and fivefold higher than in control, respectively. The specific activities of the recombinant and endogenous mouse-cell enzyme are similar. These expression constructs will be of use in studies of DNA methylation in mammals
Uptake and release of double-walled carbon nanotubes by mammalian cells
Efforts to develop carbon nanotubes (CNTs) as nano-vehicles for precise and controlled drug and gene delivery, as well as markers for in vivo biomedical imaging, are currently hampered by uncertainties with regard to their cellular uptake, their fate in the body, and their safety. All of these processes are likely to be affected by the purity of CNT preparation, as well as the size and concentration of CNTs used, parameters that are often poorly controlled in biological experiments. It is demonstrated herein that under the experimental conditions of standard transfection methods, DWNTs are taken up by cultured cells but are then released after 24 h with no discernable stress response. The results support the potential therapeutic use of CNTs in many biomedical settings, such as cancer therapy
Effect of varying magnetic fields on targeted gene delivery of nucleic acid-based molecules
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The importance of high transfection efficiency has been emphasized in many studies investigating
methods to improve gene delivery. Accordingly, non-viral transfection agents are widely used as transfection
vectors to condense oligonucleotides, DNA, RNA, siRNA, deliver into the cell, and release the cargo.
Polyethyleneimine (PEI) is one of the most popular non-viral transfection agents. However, the challenge
between high transfection efficiency and toxicity of the polymers is not totally resolved. The delivery of
necessary drugs and genes for patients and their transport under safe conditions require carefully designed
and controlled delivery systems and constitute a critical stage of patients’ treatment. Compact systems are
considered as the strongest candidate for the preparation and delivery of drugs and genes under leak free and
safe conditions because of their low energy consumption, low waste disposal, parallel and fast processing
capabilities, removal of human factor, high mixing capabilities, enhanced safety, and low amount of
reagents. Motivated by this need in the literature, a platform for gene delivery via magnetic actuation of
nanoparticles was developed in this study. The use of PEI-SPION (Super paramagnetic ironoxide
nanoparticles) as transfection agents in in vitro studies was investigated with the effect of varying magnetic
fields provided by a special magnetic system design, which was used as magnetic actuator offering different
magnet's turn speeds and directions in the system. Results obtained from magnetic actuator systems were
compared to the experiments without actuation and significant enhancement was observed in the transfection
efficacies
Protein transduction: A novel tool for tissue regeneration
Tissue regeneration in humans is limited and excludes vitals organs like heart and brain. Transformation experiments with oncogenes like T antigen have shown that retrodifferentiation of the respective cells is possible but hard to control. To bypass the risk of cancer formation a protein therapy approach has been developed. The transient delivery of proteins rather than genes could still induce terminallydifferentiated cells to reenter the cell cycle. This approach takes advantage of proteintransducing domains that mediate the transfer of cargo proteins into cells. The goal of this brief review is to outline the basics of protein transduction and to discuss potential applications for tissue regeneration
In vitro analysis of SERCA2 gene regulation in hypertrophic cardiomyocytes and increasing transfection efficiency by gene-gun biolistics
The transcriptional downregulation of the SERCA2 gene is studied using neonatal rat cardiomyocytes stimulated with endothelin-1 to induce hypertrophy. Liposome-based transfection of cells with a 1.9 kb SERCA2 promoter fragment directed expression of a reporter gene identical to the downregulation of genomic SERCA2 expression by endothelin-1. Results of a new gene gun technology for transient transfection of cardiomyocytes with a RSVβ-galactosidase construct are reported. This new method for propelling DNA-coated gold beads into cardiomyocytes is extremely suitable for directly testing promoter/reporter gene DNA constructs since the transfection efficiency (approximately 10%) appears to be higher than traditional transfection methods
Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.
The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation
Neurogenin3 restricts serotonergic neuron differentiation to the hindbrain
The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types.Fil: Carcagno, Abel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Di Bella, Daniela Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Goulding, Martyn. Salk Institute for Biological Studies; Estados UnidosFil: Guillemot, Francois. MRC National Institute for Medical Research; Reino UnidoFil: Lanuza, Guillermo Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles
Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors. Small interfering RNA (siRNA) is a promising modality for anti-neoplastic therapy due to its precision and wide range of potential therapeutic targets. Unfortunately, siRNA therapy is limited by low serum half-life, vulnerability to intracellular digestion, and transient therapeutic effect. We assessed the ability of a peptide based, oligonucleotide condensing, endosomolytic nanoparticle (NP) system to deliver siRNA to KRAS-driven cancers. We show that this peptide-based NP is avidly taken up by cancer cell
- …
