6 research outputs found

    Transductive Segmentation of Textured Meshes

    Get PDF
    International audienceThis paper addresses the problem of segmenting a textured mesh into objects or object classes, consistently with user-supplied seeds. We view this task as transductive learning and use the flexibility of kernel-based weights to incorporate a various number of diverse features. Our method combines a Laplacian graph regularizer that enforces spatial coherence in label propagation and an SVM classifier that ensures dissemination of the seeds characteristics. Our interactive framework allows to easily specify classes seeds with sketches drawn on the mesh and potentially refine the segmentation. We obtain qualitatively good segmentations on several architectural scenes and show the applicability of our method to outliers removing

    Semantic Segmentation of 3D Textured Meshes for Urban Scene Analysis

    Get PDF
    International audienceClassifying 3D measurement data has become a core problem in photogram-metry and 3D computer vision, since the rise of modern multiview geometry techniques, combined with affordable range sensors. We introduce a Markov Random Field-based approach for segmenting textured meshes generated via multi-view stereo into urban classes of interest. The input mesh is first partitioned into small clusters, referred to as superfacets, from which geometric and photometric features are computed. A random forest is then trained to predict the class of each superfacet as well as its similarity with the neighboring superfacets. Similarity is used to assign the weights of the Markov Random Field pairwise-potential and accounts for contextual information between the classes. The experimental results illustrate the efficacy and accuracy of the proposed framework

    Transductive Segmentation of Textured Meshes

    No full text
    Abstract. This paper addresses the problem of segmenting a textured mesh into objects or object classes, consistently with user-supplied seeds. We view this task as transductive learning and use the flexibility of kernel-based weights to incorporate a various number of diverse features. Our method combines a Laplacian graph regularizer that enforces spatial coherence in label propagation and an SVM classifier that ensures dissemination of the seeds characteristics. Our interactive framework allows to easily specify classes seeds with sketches drawn on the mesh and potentially refine the segmentation. We obtain qualitatively good segmentations on several architectural scenes and show the applicability of our method to outliers removing.
    corecore