58,586 research outputs found
High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered
regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The
regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little
information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution
time-course profile of gene expression during development of a single leaf over a 3-week period to senescence.
A complex experimental design approach and a combination of methods were used to extract high-quality replicated data
and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to
reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well
as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups
of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic
processes, signaling pathways, and specific TF activity, which will underpin the development of network models to
elucidate the process of senescence
Recommended from our members
A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns
Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses
Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation
Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance
Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle
Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence
DNA methylation dynamics in aging: How far are we from understanding the mechanisms?
DNA methylation is currently the most promising molecular marker for monitoring aging and predicting life expectancy. However, the mechanisms underlying age-related DNA methylation changes remain mostly undiscovered.Here we discuss the current knowledge of the dynamic nature of DNA epigenome landscape in mammals, and propose putative molecular mechanisms for aging-associated DNA epigenetic changes. Specifically, we describe age-related variations of methylcytosine and its oxidative derivatives in relation to the dynamics of chromatin structure, histone post-translational modifications and their modulators.Finally, we are proposing a conceptual framework that could explain the complex nature of the effects of age on DNA methylation patterns. This combines the accumulation of DNA methylation noise and also all of the predictable, site-specific DNA methylation changes.Gathering information in this area would pave the way for future investigation aimed at establishing a possible causative role of epigenetic mechanisms in aging
Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence.
To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder
Emerging connections between small RNAs and phytohormones
Small RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored. Phytohormones are central in the plant’s response to stress, and multiple recent studies highlight an emerging role for sRNAs in the direct response to, or the regulation of, plant hormonal pathways. In this review, we discuss recent progress on the unraveling of crossregulation between sRNAs and nine plant hormones
- …
