11,446 research outputs found

    Random Dynamics of Transcendental Functions

    Full text link
    This work concerns random dynamics of hyperbolic entire and meromorphic functions of finite order and whose derivative satisfies some growth condition at infinity. This class contains most of the classical families of transcendental functions and goes much beyond. Based on uniform versions of Nevanlinna's value distribution theory we first build a thermodynamical formalism which, in particular, produces unique geometric and fiberwise invariant Gibbs states. Moreover, spectral gap property for the associated transfer operator along with exponential decay of correlations and a central limit theorem are shown. This part relies on our construction of new positive invariant cones that are adapted to the setting of unbounded phase spaces. This setting rules out the use of Hilbert's metric along with the usual contraction principle. However these cones allow us to apply a contraction argument stemming from Bowen's initial approach.Comment: Final Version, to appear in J. d'Analyse Math, 35 page

    Satisfiability Modulo Transcendental Functions via Incremental Linearization

    Full text link
    In this paper we present an abstraction-refinement approach to Satisfiability Modulo the theory of transcendental functions, such as exponentiation and trigonometric functions. The transcendental functions are represented as uninterpreted in the abstract space, which is described in terms of the combined theory of linear arithmetic on the rationals with uninterpreted functions, and are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear functions. Suitable numerical techniques are used to ensure that the abstractions of the transcendental functions are sound even in presence of irrationals. Our experimental evaluation on benchmarks from verification and mathematics demonstrates the potential of our approach, showing that it compares favorably with delta-satisfiability /interval propagation and methods based on theorem proving

    - XSummer - Transcendental Functions and Symbolic Summation in Form

    Full text link
    Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums,where the harmonic sums and their generalizations appear as building blocks, originating for example from the expansion of generalized hypergeometric functions around integer values of the parameters. In this Letter we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system Form.Comment: 21 pages, 1 figure, Late
    • …
    corecore