550 research outputs found

    Matrix-Monotonic Optimization for MIMO Systems

    Full text link
    For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables e.g., precoders, equalizers, training sequences, etc. are usually matrices. It is well known that matrix operations are usually more complicated compared to their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final Versio

    Optimal Power Allocation by Imperfect Hardware Analysis in Untrusted Relaying Networks

    Get PDF
    By taking a variety of realistic hardware imperfections into consideration, we propose an optimal power allocation (OPA) strategy to maximize the instantaneous secrecy rate of a cooperative wireless network comprised of a source, a destination and an untrusted amplify-and-forward (AF) relay. We assume that either the source or the destination is equipped with a large-scale multiple antennas (LSMA) system, while the rest are equipped with a single antenna. To prevent the untrusted relay from intercepting the source message, the destination sends an intended jamming noise to the relay, which is referred to as destination-based cooperative jamming (DBCJ). Given this system model, novel closed-form expressions are presented in the high signal-to-noise ratio (SNR) regime for the ergodic secrecy rate (ESR) and the secrecy outage probability (SOP). We further improve the secrecy performance of the system by optimizing the associated hardware design. The results reveal that by beneficially distributing the tolerable hardware imperfections across the transmission and reception radio-frequency (RF) front ends of each node, the system's secrecy rate may be improved. The engineering insight is that equally sharing the total imperfections at the relay between the transmitter and the receiver provides the best secrecy performance. Numerical results illustrate that the proposed OPA together with the most appropriate hardware design significantly increases the secrecy rate.Comment: 29 pages, 7 figures, Submitted to IEEE Transactions on Wireless Communication

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Robust transceiver design for MIMO relay systems with tomlinson harashima precoding

    Get PDF
    In this paper we consider a robust transceiver design for two hop non-regenerative multiple-input multiple-output (MIMO) relay networks with imperfect channel state information (CSI). The transceiver consists of Tomlinson Harashima Pre-coding (THP) at the source with a linear precoder at the relay and linear equalisation at the destination. Under the assumption that each node in the network can acquire statistical knowledge of the channel in the form of a channel mean and estimation error covariance, we optimise the processors to minimise the expected arithmetic mean square error (MSE) subject to transmission power constraints at the source and relay. Simulation results demonstrate the robustness of the proposed transceiver design to channel estimation errors

    A General Robust Linear Transceiver Design for Multi-Hop Amplify-and-Forward MIMO Relaying Systems

    Get PDF
    In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multiple-input multiple-out (MIMO) relaying systems with Gaussian distributed channel estimation errors is investigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) minimization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maximization, are considered and unified into a single matrix-variate optimization problem. A general robust design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived when either the covariance matrix of channel estimation errors seen from the transmitter side or the corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based on the optimal structure, the original transceiver design problems are reduced to much simpler problems with only scalar variables whose solutions are readily obtained by iterative water-filling algorithm. A number of existing transceiver design algorithms are found to be special cases of the proposed solution. The differences between our work and the existing related work are also discussed in detail. The performance advantages of the proposed robust designs are demonstrated by simulation results.Comment: 30 pages, 7 figures, Accepted by IEEE Transactions on Signal Processin
    corecore