2,440 research outputs found

    A Robust Model Predictive Control Approach for Autonomous Underwater Vehicles Operating in a Constrained workspace

    Full text link
    This paper presents a novel Nonlinear Model Predictive Control (NMPC) scheme for underwater robotic vehicles operating in a constrained workspace including static obstacles. The purpose of the controller is to guide the vehicle towards specific way points. Various limitations such as: obstacles, workspace boundary, thruster saturation and predefined desired upper bound of the vehicle velocity are captured as state and input constraints and are guaranteed during the control design. The proposed scheme incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, the control inputs calculated by the proposed scheme are formulated in a way that the vehicle will exploit the ocean currents, when these are in favor of the way-point tracking mission which results in reduced energy consumption by the thrusters. The performance of the proposed control strategy is experimentally verified using a 44 Degrees of Freedom (DoF) underwater robotic vehicle inside a constrained test tank with obstacles.Comment: IEEE International Conference on Robotics and Automation (ICRA-2018), Accepte

    An Innovative Mission Management System for Fixed-Wing UAVs

    Get PDF
    This paper presents two innovative units linked together to build the main frame of a UAV Mis- sion Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory

    Nonlinear model predictive control-based guidance law for path following of unmanned surface vehicles

    Full text link
    This work proposes a nonlinear model predictive control-based guidance strategy for unmanned surface vehicles, focused on path following. The application of this strategy, in addition to overcome drawbacks of previous line-of-sight-based guidance laws, intends to enable the application of predictive strategies also to the low-level control, responsible for tracking the references provided by the guidance strategy. The stability and robustness of the proposed strategy are theoretically discussed. Furthermore, given the non-negligible computational cost of such nonlinear predictive guidance strategy, a practical nonlinear model predictive control strategy is also applied in order to reduce the computational cost to a great extent. The effectiveness and advantages of both proposed strategies over other nonlinear guidance laws are illustrated through a complete set of simulations.Comment: 21 pages, 15 figures. Postprint of the final published wor

    Distributed Model Predictive Control for Cooperative Multirotor Landing on Uncrewed Surface Vessel in Waves

    Full text link
    Heterogeneous autonomous robot teams consisting of multirotor and uncrewed surface vessels (USVs) have the potential to enable various maritime applications, including advanced search-and-rescue operations. A critical requirement of these applications is the ability to land a multirotor on a USV for tasks such as recharging. This paper addresses the challenge of safely landing a multirotor on a cooperative USV in harsh open waters. To tackle this problem, we propose a novel sequential distributed model predictive control (MPC) scheme for cooperative multirotor-USV landing. Our approach combines standard tracking MPCs for the multirotor and USV with additional artificial intermediate goal locations. These artificial goals enable the robots to coordinate their cooperation without prior guidance. Each vehicle solves an individual optimization problem for both the artificial goal and an input that tracks it but only communicates the former to the other vehicle. The artificial goals are penalized by a suitable coupling cost. Furthermore, our proposed distributed MPC scheme utilizes a spatial-temporal wave model to coordinate in real-time a safer landing location and time the multirotor's landing to limit severe tilt of the USV

    Non-linear control algorithms for an unmanned surface vehicle

    Get PDF
    Although intrinsically marine craft are known to exhibit non-linear dynamic characteristics, modern marine autopilot system designs continue to be developed based on both linear and non-linear control approaches. This article evaluates two novel non-linear autopilot designs based on non-linear local control network and non-linear model predictive control approaches to establish their effectiveness in terms of control activity expenditure, power consumption and mission duration length under similar operating conditions. From practical point of view, autopilot with less energy consumption would in reality provide the battery-powered vehicle with longer mission duration. The autopilot systems are used to control the non-linear yaw dynamics of an unmanned surface vehicle named Springer. The yaw dynamics of the vehicle being modelled using a multi-layer perceptron-type neural network. Simulation results showed that the autopilot based on local control network method performed better for Springer. Furthermore, on the whole, the local control network methodology can be regarded as a plausible paradigm for marine control system design. © 2014 IMechE

    A review of path following control strategies for autonomous robotic vehicles: theory, simulations, and experiments

    Full text link
    This article presents an in-depth review of the topic of path following for autonomous robotic vehicles, with a specific focus on vehicle motion in two dimensional space (2D). From a control system standpoint, path following can be formulated as the problem of stabilizing a path following error system that describes the dynamics of position and possibly orientation errors of a vehicle with respect to a path, with the errors defined in an appropriate reference frame. In spite of the large variety of path following methods described in the literature we show that, in principle, most of them can be categorized in two groups: stabilization of the path following error system expressed either in the vehicle's body frame or in a frame attached to a "reference point" moving along the path, such as a Frenet-Serret (F-S) frame or a Parallel Transport (P-T) frame. With this observation, we provide a unified formulation that is simple but general enough to cover many methods available in the literature. We then discuss the advantages and disadvantages of each method, comparing them from the design and implementation standpoint. We further show experimental results of the path following methods obtained from field trials testing with under-actuated and fully-actuated autonomous marine vehicles. In addition, we introduce open-source Matlab and Gazebo/ROS simulation toolboxes that are helpful in testing path following methods prior to their integration in the combined guidance, navigation, and control systems of autonomous vehicles
    corecore