9,279 research outputs found

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Goal Set Inverse Optimal Control and Iterative Re-planning for Predicting Human Reaching Motions in Shared Workspaces

    Full text link
    To enable safe and efficient human-robot collaboration in shared workspaces it is important for the robot to predict how a human will move when performing a task. While predicting human motion for tasks not known a priori is very challenging, we argue that single-arm reaching motions for known tasks in collaborative settings (which are especially relevant for manufacturing) are indeed predictable. Two hypotheses underlie our approach for predicting such motions: First, that the trajectory the human performs is optimal with respect to an unknown cost function, and second, that human adaptation to their partner's motion can be captured well through iterative re-planning with the above cost function. The key to our approach is thus to learn a cost function which "explains" the motion of the human. To do this, we gather example trajectories from pairs of participants performing a collaborative assembly task using motion capture. We then use Inverse Optimal Control to learn a cost function from these trajectories. Finally, we predict reaching motions from the human's current configuration to a task-space goal region by iteratively re-planning a trajectory using the learned cost function. Our planning algorithm is based on the trajectory optimizer STOMP, it plans for a 23 DoF human kinematic model and accounts for the presence of a moving collaborator and obstacles in the environment. Our results suggest that in most cases, our method outperforms baseline methods when predicting motions. We also show that our method outperforms baselines for predicting human motion when a human and a robot share the workspace.Comment: 12 pages, Accepted for publication IEEE Transaction on Robotics 201
    corecore