2 research outputs found
Stabilization of non-admissible curves for a class of nonholonomic systems
The problem of tracking an arbitrary curve in the state space is considered
for underactuated driftless control-affine systems. This problem is formulated
as the stabilization of a time-varying family of sets associated with a
neighborhood of the reference curve. An explicit control design scheme is
proposed for the class of controllable systems whose degree of nonholonomy is
equal to 1. It is shown that the trajectories of the closed-loop system
converge exponentially to any given neighborhood of the reference curve
provided that the solutions are defined in the sense of sampling. This
convergence property is also illustrated numerically by several examples of
nonholonomic systems of degrees 1 and 2.Comment: This is the author's version of the manuscript accepted for
  publication in the Proceedings of the 2019 European Control Conference
  (ECC'19
