6 research outputs found

    Trajectory Optimization for Completion Time Minimization in UAV-Enabled Multicasting

    Full text link
    This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to minimize its mission completion time, while ensuring that each GT is able to successfully recover the file with a high probability required. We consider the use of practical random linear network coding (RLNC) for UAV multicasting, so that each GT is able to recover the file as long as it receives a sufficiently large number of coded packets. However, the formulated UAV trajectory optimization problem is non-convex and difficult to be directly solved. To tackle this issue, we first derive an analytical lower bound for the success probability of each GT's file recovery. Based on this result, we then reformulate the problem into a more tractable form, where the UAV trajectory only needs to be designed to meet a set of constraints each on the minimum connection time with a GT, during which their distance is below a designed threshold. We show that the optimal UAV trajectory only needs to constitute connected line segments, thus it can be obtained by determining first the optimal set of waypoints and then UAV speed along the lines connecting the waypoints. We propose practical schemes for the waypoints design based on a novel concept of virtual base station (VBS) placement and by applying convex optimization techniques. Furthermore, for given set of waypoints, we obtain the optimal UAV speed over the resulting path efficiently by solving a linear programming (LP) problem. Numerical results show that the proposed UAV-enabled multicasting with optimized trajectory design achieves significant performance gains as compared to benchmark schemes.Comment: 13 pages, 8 figures, 2 tables, submitted for possible journal publication

    Trajectory Optimization in UAV-Assisted Cellular Networks under Mission Duration Constraint

    Full text link
    In this paper, we address the problem of finding the optimal trajectory for an unmanned aerial vehicle (UAV) for improving the wireless coverage of a terrestrial cellular network. In particular, we consider a UAV that is tasked to travel from one point to another within a given time constraint, and it can also simultaneously assist the cellular network by providing wireless coverage during its mission. Considering an interference limited downlink of a cellular network, we formulate an optimization problem for maximizing the proportional-fair (PF) data rate of the cellular network and explore dynamic programming (DP) technique for finding the optimum UAV trajectory. We also explore the optimal UAV trajectories associated with maximum sum-rate and 5th percentile spectral efficiency (5pSE) rate and compare the capacity and coverage performance of the three approaches. Numerical simulations show that the maximum sum-rate trajectory provides the best per user capacity whereas, the optimal PF trajectory yields higher coverage probability than the other two trajectories. The optimal trajectories are generally infeasible to follow exactly as the UAVs can not take sharp turns due to kinematic constraints. Hence, we generate smooth trajectories using Bezier curve.Comment: Accepted in IEEE Radio Wireless Week 2019, Orlando, F

    Cognitive UAV Communication via Joint Maneuver and Power Control

    Full text link
    This paper investigates a new scenario of spectrum sharing between unmanned aerial vehicle (UAV) and terrestrial wireless communication, in which a cognitive/secondary UAV transmitter communicates with a ground secondary receiver (SR), in the presence of a number of primary terrestrial communication links that operate over the same frequency band. We exploit the UAV's mobility in three-dimensional (3D) space to improve its cognitive communication performance while controlling the co-channel interference at the primary receivers (PRs), such that the received interference power at each PR is below a prescribed threshold termed as interference temperature (IT). First, we consider the quasi-stationary UAV scenario, where the UAV is placed at a static location during each communication period of interest. In this case, we jointly optimize the UAV's 3D placement and power control to maximize the SR's achievable rate, subject to the UAV's altitude and transmit power constraints, as well as a set of IT constraints at the PRs to protect their communications. Next, we consider the mobile UAV scenario, in which the UAV is dispatched to fly from an initial location to a final location within a given task period. We propose an efficient algorithm to maximize the SR's average achievable rate over this period by jointly optimizing the UAV's 3D trajectory and power control, subject to the additional constraints on UAV's maximum flying speed and initial/final locations. Finally, numerical results are provided to evaluate the performance of the proposed designs for different scenarios, as compared to various benchmark schemes. It is shown that in the quasi-stationary scenario the UAV should be placed at its minimum altitude while in the mobile scenario the UAV should adjust its altitude along with horizontal trajectory, so as to maximize the SR's achievable rate in both scenarios.Comment: 16 pages,11 figures, accepted by IEEE Transactions on Communication

    Energy Management and Trajectory Optimization for UAV-Enabled Legitimate Monitoring Systems

    Full text link
    Thanks to their quick placement and high flexibility, unmanned aerial vehicles (UAVs) can be very useful in the current and future wireless communication systems. With a growing number of smart devices and infrastructure-free communication networks, it is necessary to legitimately monitor these networks to prevent crimes. In this paper, a novel framework is proposed to exploit the flexibility of the UAV for legitimate monitoring via joint trajectory design and energy management. The system includes a suspicious transmission link with a terrestrial transmitter and a terrestrial receiver, and a UAV to monitor the suspicious link. The UAV can adjust its positions and send jamming signal to the suspicious receiver to ensure successful eavesdropping. Based on this model, we first develop an approach to minimize the overall jamming energy consumption of the UAV. Building on a judicious (re-)formulation, an alternating optimization approach is developed to compute a locally optimal solution in polynomial time. Furthermore, we model and include the propulsion power to minimize the overall energy consumption of the UAV. Leveraging the successive convex approximation method, an effective iterative approach is developed to find a feasible solution fulfilling the Karush-Kuhn-Tucker (KKT) conditions. Extensive numerical results are provided to verify the merits of the proposed schemes.Comment: IEEE Transactions on Wireless Communications, revised, Apr. 202

    QoE-Driven UAV-Enabled Pseudo-Analog Wireless Video Broadcast: A Joint Optimization of Power and Trajectory

    Full text link
    The explosive demands for high quality mobile video services have caused heavy overload to the existing cellular networks. Although the small cell has been proposed to alleviate such a problem, the network operators may not be interested in deploying numerous base stations (BSs) due to expensive infrastructure construction and maintenance. The unmanned aerial vehicles (UAVs) can provide the low-cost and quick deployment, which can support high-quality line-of-sight communications and have become promising mobile BSs. In this paper, we propose a quality-of-experience (QoE)-driven UAV-enabled pseudo-analog wireless video broadcast scheme, which provides mobile video broadcast services for ground users (GUs). Due to limited energy available in UAV, the aim of the proposed scheme is to maximize the minimum peak signal-to-noise ratio (PSNR) of GUs' video reconstruction quality by jointly optimizing the transmission power allocation strategy and the UAV trajectory. Firstly, the reconstructed video quality at GUs is defined under the constraints of the UAV's total energy and motion mechanism, and the proposed scheme is formulated as a complex non-convex optimization problem. Then, the optimization problem is simplified to obtain a tractable suboptimal solution with the help of the block coordinate descent model and the successive convex approximation model. Finally, the experimental results are presented to show the effectiveness of the proposed scheme. Specifically, the proposed scheme can achieve over 1.6dB PSNR gains in terms of GUs' minimum PSNR, compared with the state-of-the-art schemes, e.g., DVB, SoftCast, and SharpCast

    Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective

    Full text link
    Integrating the unmanned aerial vehicles (UAVs) into the cellular network is envisioned to be a promising technology to significantly enhance the communication performance of both UAVs and existing terrestrial users. In this paper, we first provide an overview on the two main paradigms in cellular UAV communications, i.e., cellular-enabled UAV communication with UAVs as new aerial users served by the ground base stations (GBSs), and UAV-assisted cellular communication with UAVs as new aerial communication platforms serving the terrestrial users. Then, we focus on the former paradigm and study a new UAV trajectory design problem subject to practical communication connectivity constraints with the GBSs. Specifically, we consider a cellular-connected UAV in the mission of flying from an initial location to a final location, during which it needs to maintain reliable communication with the cellular network by associating with one GBS at each time instant. We aim to minimize the UAV's mission completion time by optimizing its trajectory, subject to a quality-of-connectivity constraint of the GBS-UAV link specified by a minimum receive signal-to-noise ratio target. To tackle this challenging non-convex problem, we first propose a graph connectivity based method to verify its feasibility. Next, by examining the GBS-UAV association sequence over time, we obtain useful structural results on the optimal UAV trajectory, based on which two efficient methods are proposed to find high-quality approximate trajectory solutions by leveraging graph theory and convex optimization techniques. The proposed methods are analytically shown to be capable of achieving a flexible trade-off between complexity and performance, and yielding a solution that is arbitrarily close to the optimal solution in polynomial time. Finally, we make concluding remarks and point out some promising directions for future work.Comment: Invited paper, submitted for publication, 55 pages, 11 figure
    corecore