4 research outputs found

    Trajectory Codes for Flash Memory

    Get PDF
    Flash memory is well-known for its inherent asymmetry: the flash-cell charge levels are easy to increase but are hard to decrease. In a general rewriting model, the stored data changes its value with certain patterns. The patterns of data updates are determined by the data structure and the application, and are independent of the constraints imposed by the storage medium. Thus, an appropriate coding scheme is needed so that the data changes can be updated and stored efficiently under the storage-medium's constraints. In this paper, we define the general rewriting problem using a graph model. It extends many known rewriting models such as floating codes, WOM codes, buffer codes, etc. We present a new rewriting scheme for flash memories, called the trajectory code, for rewriting the stored data as many times as possible without block erasures. We prove that the trajectory code is asymptotically optimal in a wide range of scenarios. We also present randomized rewriting codes optimized for expected performance (given arbitrary rewriting sequences). Our rewriting codes are shown to be asymptotically optimal.Comment: Submitted to IEEE Trans. on Inform. Theor

    Rewriting Flash Memories by Message Passing

    Get PDF
    This paper constructs WOM codes that combine rewriting and error correction for mitigating the reliability and the endurance problems in flash memory. We consider a rewriting model that is of practical interest to flash applications where only the second write uses WOM codes. Our WOM code construction is based on binary erasure quantization with LDGM codes, where the rewriting uses message passing and has potential to share the efficient hardware implementations with LDPC codes in practice. We show that the coding scheme achieves the capacity of the rewriting model. Extensive simulations show that the rewriting performance of our scheme compares favorably with that of polar WOM code in the rate region where high rewriting success probability is desired. We further augment our coding schemes with error correction capability. By drawing a connection to the conjugate code pairs studied in the context of quantum error correction, we develop a general framework for constructing error-correction WOM codes. Under this framework, we give an explicit construction of WOM codes whose codewords are contained in BCH codes.Comment: Submitted to ISIT 201

    Error correction and partial information rewriting for flash memories

    Full text link
    This paper considers the partial information rewriting problem for flash memories. In this problem, the state of information can only be updated to a limited number of new states, and errors may occur in memory cells between two adjacent updates. We propose two coding schemes based on the models of trajectory codes. The bounds on achievable code rates are shown using polar WOM coding. Our schemes generalize the existing rewriting codes in multiple ways, and can be applied to various practical scenarios such as file editing, log-based file systems and file synchronization systems
    corecore