34,683 research outputs found

    Recent Trends in Application of Neural Networks to Speech Recognition

    Get PDF
    : In this paper, we review the research work that deal with neural network based speech recognition and the various approaches they take to bring in accuracy. Three approaches of speech recognition using neural network learning models are discussed: (1) Deep Neural Network(DNN) - Hidden Markov Model(HMM), (2) Recurrent Neural Networks(RNN) and (3) Long Short Term Memory(LSTM). It also discusses how for a given application one model is better suited than the other and when should one prefer one model over another.A pre-trained Deep Neural Network - Hidden Markov Model hybrid architecture trains the DNN to produce a distribution over tied triphone states as its output. The DNN pre-training algorithm is a robust and often a helpful way to initialize deep neural networks generatively that can aid in optimization and reduce generalization error. Combining recurrent neural nets and HMM results in a highly discriminative system with warping capabilities. To evaluate the impact of recurrent connections we compare the train and test characteristic error rates of DNN, Recurrent Dynamic Neural Networks (RDNN), and Bi-Directional Deep Neural Network (BRDNN) models while roughly controlling for the total number of free parameters in the model. Both variants of recurrent models show substantial test set characteristic error rate improvements over the non-recurrent DNN model. Inspired from the discussion about how to construct deep RNNs, several alternative architectures were constructed for deep LSTM networks from three points: (1) input-to-hidden function, (2) hidden-to-hidden transition and (3) hidden-to-output function. Furthermore, some deeper variants of LSTMs were also designed by combining different points

    SkipNet: Learning Dynamic Routing in Convolutional Networks

    Full text link
    While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by 30-90% while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.Comment: ECCV 2018 Camera ready version. Code is available at https://github.com/ucbdrive/skipne

    Forecasting foreign exchange rates with adaptive neural networks using radial basis functions and particle swarm optimization

    Get PDF
    The motivation for this paper is to introduce a hybrid Neural Network architecture of Particle Swarm Optimization and Adaptive Radial Basis Function (ARBF-PSO), a time varying leverage trading strategy based on Glosten, Jagannathan and Runkle (GJR) volatility forecasts and a Neural Network fitness function for financial forecasting purposes. This is done by benchmarking the ARBF-PSO results with those of three different Neural Networks architectures, a Nearest Neighbors algorithm (k-NN), an autoregressive moving average model (ARMA), a moving average convergence/divergence model (MACD) plus a naïve strategy. More specifically, the trading and statistical performance of all models is investigated in a forecast simulation of the EUR/USD, EUR/GBP and EUR/JPY ECB exchange rate fixing time series over the period January 1999 to March 2011 using the last two years for out-of-sample testing

    Fuzzy heterogeneous neural networks for signal forecasting

    Get PDF
    Fuzzy heterogeneous neural networks are recently introduced models based on neurons accepting heterogeneous inputs (i.e. mixtures of numerical and non-numerical information possibly with missing data) with either crisp or imprecise character, which can be coupled with classical neurons. This paper compares the effectiveness of this kind of networks with time-delay and recurrent architectures that use classical neuron models and training algorithms in a signal forecasting problem, in the context of finding models of the central nervous system controllers.Peer ReviewedPostprint (author's final draft
    • …
    corecore