1,171 research outputs found

    Fast and Accurate Person Re-Identification with RMNet

    Full text link
    In this paper we introduce a new neural network architecture designed to use in embedded vision applications. It merges the best working practices of network architectures like MobileNets and ResNets to our named RMNet architecture. We also focus on key moments of building mobile architectures to carry out in the limited computation budget. Additionally, to demonstrate the effectiveness of our architecture we evaluate the RMNet backbone on Person Re-identification task. The proposed approach is in top 3 of state of the art solutions on Market-1501 challenge, however our method significantly outperforms them by the inference speed

    Improved Hard Example Mining by Discovering Attribute-based Hard Person Identity

    Full text link
    In this paper, we propose Hard Person Identity Mining (HPIM) that attempts to refine the hard example mining to improve the exploration efficacy in person re-identification. It is motivated by following observation: the more attributes some people share, the more difficult to separate their identities. Based on this observation, we develop HPIM via a transferred attribute describer, a deep multi-attribute classifier trained from the source noisy person attribute datasets. We encode each image into the attribute probabilistic description in the target person re-ID dataset. Afterwards in the attribute code space, we consider each person as a distribution to generate his view-specific attribute codes in different practical scenarios. Hence we estimate the person-specific statistical moments from zeroth to higher order, which are further used to calculate the central moment discrepancies between persons. Such discrepancy is a ground to choose hard identity to organize proper mini-batches, without concerning the person representation changing in metric learning. It presents as a complementary tool of hard example mining, which helps to explore the global instead of the local hard example constraint in the mini-batch built by randomly sampled identities. Extensive experiments on two person re-identification benchmarks validated the effectiveness of our proposed algorithm

    In Defense of the Triplet Loss for Person Re-Identification

    Full text link
    In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is no exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.Comment: Lucas Beyer and Alexander Hermans contributed equally. Updates: Minor fixes, new SOTA comparisons, add CUHK03 result

    Neural Signatures for Licence Plate Re-identification

    Full text link
    The problem of vehicle licence plate re-identification is generally considered as a one-shot image retrieval problem. The objective of this task is to learn a feature representation (called a "signature") for licence plates. Incoming licence plate images are converted to signatures and matched to a previously collected template database through a distance measure. Then, the input image is recognized as the template whose signature is "nearest" to the input signature. The template database is restricted to contain only a single signature per unique licence plate for our problem. We measure the performance of deep convolutional net-based features adapted from face recognition on this task. In addition, we also test a hybrid approach combining the Fisher vector with a neural network-based embedding called "f2nn" trained with the Triplet loss function. We find that the hybrid approach performs comparably while providing computational benefits. The signature generated by the hybrid approach also shows higher generalizability to datasets more dissimilar to the training corpus

    Joint Discriminative and Generative Learning for Person Re-identification

    Full text link
    Person re-identification (re-id) remains challenging due to significant intra-class variations across different cameras. Recently, there has been a growing interest in using generative models to augment training data and enhance the invariance to input changes. The generative pipelines in existing methods, however, stay relatively separate from the discriminative re-id learning stages. Accordingly, re-id models are often trained in a straightforward manner on the generated data. In this paper, we seek to improve learned re-id embeddings by better leveraging the generated data. To this end, we propose a joint learning framework that couples re-id learning and data generation end-to-end. Our model involves a generative module that separately encodes each person into an appearance code and a structure code, and a discriminative module that shares the appearance encoder with the generative module. By switching the appearance or structure codes, the generative module is able to generate high-quality cross-id composed images, which are online fed back to the appearance encoder and used to improve the discriminative module. The proposed joint learning framework renders significant improvement over the baseline without using generated data, leading to the state-of-the-art performance on several benchmark datasets.Comment: CVPR 2019 (Oral

    Generalization in Metric Learning: Should the Embedding Layer be the Embedding Layer?

    Full text link
    This work studies deep metric learning under small to medium scale data as we believe that better generalization could be a contributing factor to the improvement of previous fine-grained image retrieval methods; it should be considered when designing future techniques. In particular, we investigate using other layers in a deep metric learning system (besides the embedding layer) for feature extraction and analyze how well they perform on training data and generalize to testing data. From this study, we suggest a new regularization practice where one can add or choose a more optimal layer for feature extraction. State-of-the-art performance is demonstrated on 3 fine-grained image retrieval benchmarks: Cars-196, CUB-200-2011, and Stanford Online Product.Comment: new version for WAC

    Directional Statistics-based Deep Metric Learning for Image Classification and Retrieval

    Full text link
    Deep distance metric learning (DDML), which is proposed to learn image similarity metrics in an end-to-end manner based on the convolution neural network, has achieved encouraging results in many computer vision tasks.L2L2-normalization in the embedding space has been used to improve the performance of several DDML methods. However, the commonly used Euclidean distance is no longer an accurate metric for L2L2-normalized embedding space, i.e., a hyper-sphere. Another challenge of current DDML methods is that their loss functions are usually based on rigid data formats, such as the triplet tuple. Thus, an extra process is needed to prepare data in specific formats. In addition, their losses are obtained from a limited number of samples, which leads to a lack of the global view of the embedding space. In this paper, we replace the Euclidean distance with the cosine similarity to better utilize the L2L2-normalization, which is able to attenuate the curse of dimensionality. More specifically, a novel loss function based on the von Mises-Fisher distribution is proposed to learn a compact hyper-spherical embedding space. Moreover, a new efficient learning algorithm is developed to better capture the global structure of the embedding space. Experiments for both classification and retrieval tasks on several standard datasets show that our method achieves state-of-the-art performance with a simpler training procedure. Furthermore, we demonstrate that, even with a small number of convolutional layers, our model can still obtain significantly better classification performance than the widely used softmax loss.Comment: codes will come soo

    Multiscale CNN based Deep Metric Learning for Bioacoustic Classification: Overcoming Training Data Scarcity Using Dynamic Triplet Loss

    Full text link
    This paper proposes multiscale convolutional neural network (CNN)-based deep metric learning for bioacoustic classification, under low training data conditions. The proposed CNN is characterized by the utilization of four different filter sizes at each level to analyze input feature maps. This multiscale nature helps in describing different bioacoustic events effectively: smaller filters help in learning the finer details of bioacoustic events, whereas, larger filters help in analyzing a larger context leading to global details. A dynamic triplet loss is employed in the proposed CNN architecture to learn a transformation from the input space to the embedding space, where classification is performed. The triplet loss helps in learning this transformation by analyzing three examples, referred to as triplets, at a time where intra-class distance is minimized while maximizing the inter-class separation by a dynamically increasing margin. The number of possible triplets increases cubically with the dataset size, making triplet loss more suitable than the softmax cross-entropy loss in low training data conditions. Experiments on three different publicly available datasets show that the proposed framework performs better than existing bioacoustic classification frameworks. Experimental results also confirm the superiority of the triplet loss over the cross-entropy loss in low training data conditionsComment: Under Review at JASA. Primitive version of paper. We are still working on getting better performances out of the comparative method

    Towards Learning a Universal Non-Semantic Representation of Speech

    Full text link
    The ultimate goal of transfer learning is to reduce labeled data requirements by exploiting a pre-existing embedding model trained for different datasets or tasks. The visual and language communities have established benchmarks to compare embeddings, but the speech community has yet to do so. This paper proposes a benchmark for comparing speech representations on non-semantic tasks, and proposes a representation based on an unsupervised triplet-loss objective. The proposed representation outperforms other representations on the benchmark, and even exceeds state-of-the-art performance on a number of transfer learning tasks. The embedding is trained on a publicly available dataset, and it is tested on a variety of low-resource downstream tasks, including personalization tasks and medical domain. The benchmark, models, and evaluation code are publicly released

    Self-Supervised Learning of Face Representations for Video Face Clustering

    Full text link
    Analyzing the story behind TV series and movies often requires understanding who the characters are and what they are doing. With improving deep face models, this may seem like a solved problem. However, as face detectors get better, clustering/identification needs to be revisited to address increasing diversity in facial appearance. In this paper, we address video face clustering using unsupervised methods. Our emphasis is on distilling the essential information, identity, from the representations obtained using deep pre-trained face networks. We propose a self-supervised Siamese network that can be trained without the need for video/track based supervision, and thus can also be applied to image collections. We evaluate our proposed method on three video face clustering datasets. The experiments show that our methods outperform current state-of-the-art methods on all datasets. Video face clustering is lacking a common benchmark as current works are often evaluated with different metrics and/or different sets of face tracks.Comment: To appear at International Conference on Automatic Face and Gesture Recognition (2019) as an Oral. The datasets and code are available at https://github.com/vivoutlaw/SSIA
    • …
    corecore