116,435 research outputs found

    Training Behavior of Sparse Neural Network Topologies

    Full text link
    Improvements in the performance of deep neural networks have often come through the design of larger and more complex networks. As a result, fast memory is a significant limiting factor in our ability to improve network performance. One approach to overcoming this limit is the design of sparse neural networks, which can be both very large and efficiently trained. In this paper we experiment training on sparse neural network topologies. We test pruning-based topologies, which are derived from an initially dense network whose connections are pruned, as well as RadiX-Nets, a class of network topologies with proven connectivity and sparsity properties. Results show that sparse networks obtain accuracies comparable to dense networks, but extreme levels of sparsity cause instability in training, which merits further study.Comment: 6 pages. Presented at the 2019 IEEE High Performance Extreme Computing (HPEC) Conference. Received "Best Paper" awar

    A Brain-inspired Algorithm for Training Highly Sparse Neural Networks

    Get PDF
    Sparse neural networks attract increasing interest as they exhibit comparable performance to their dense counterparts while being computationally efficient. Pruning the dense neural networks is among the most widely used methods to obtain a sparse neural network. Driven by the high training cost of such methods that can be unaffordable for a low-resource device, training sparse neural networks sparsely from scratch has recently gained attention. However, existing sparse training algorithms suffer from various issues, including poor performance in high sparsity scenarios, computing dense gradient information during training, or pure random topology search. In this paper, inspired by the evolution of the biological brain and the Hebbian learning theory, we present a new sparse training approach that evolves sparse neural networks according to the behavior of neurons in the network. Concretely, by exploiting the cosine similarity metric to measure the importance of the connections, our proposed method, Cosine similarity-based and Random Topology Exploration (CTRE), evolves the topology of sparse neural networks by adding the most important connections to the network without calculating dense gradient in the backward. We carried out different experiments on eight datasets, including tabular, image, and text datasets, and demonstrate that our proposed method outperforms several state-of-the-art sparse training algorithms in extremely sparse neural networks by a large gap. The implementation code is available on https://github.com/zahraatashgahi/CTR

    Partitioning sparse deep neural networks for scalable training and inference

    Get PDF
    The state-of-the-art deep neural networks (DNNs) have significant computational and data management requirements. The size of both training data and models continue to increase. Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs. The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning. Both the feedforward (inference) and backpropagation steps in stochastic gradient descent (SGD) algorithm for training sparse DNNs involve consecutive sparse matrix-vector multiplications (SpMVs). We first introduce a distributed-memory parallel SpMV-based solution for the SGD algorithm to improve its scalability. The parallelization approach is based on row-wise partitioning of weight matrices that represent neuron connections between consecutive layers. We then propose a novel hypergraph model for partitioning weight matrices to reduce the total communication volume and ensure computational load-balance among processors. Experiments performed on sparse DNNs demonstrate that the proposed solution is highly efficient and scalable. By utilizing the proposed matrix partitioning scheme, the performance of our solution is further improved significantly
    • …
    corecore