7 research outputs found

    Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training

    Full text link
    Despite their performance, Artificial Neural Networks are not reliable enough for most of industrial applications. They are sensitive to noises, rotations, blurs and adversarial examples. There is a need to build defenses that protect against a wide range of perturbations, covering the most traditional common corruptions and adversarial examples. We propose a new data augmentation strategy called M-TLAT and designed to address robustness in a broad sense. Our approach combines the Mixup augmentation and a new adversarial training algorithm called Targeted Labeling Adversarial Training (TLAT). The idea of TLAT is to interpolate the target labels of adversarial examples with the ground-truth labels. We show that M-TLAT can increase the robustness of image classifiers towards nineteen common corruptions and five adversarial attacks, without reducing the accuracy on clean samples

    Improving Model Robustness with Latent Distribution Locally and Globally

    Full text link
    In this work, we consider model robustness of deep neural networks against adversarial attacks from a global manifold perspective. Leveraging both the local and global latent information, we propose a novel adversarial training method through robust optimization, and a tractable way to generate Latent Manifold Adversarial Examples (LMAEs) via an adversarial game between a discriminator and a classifier. The proposed adversarial training with latent distribution (ATLD) method defends against adversarial attacks by crafting LMAEs with the latent manifold in an unsupervised manner. ATLD preserves the local and global information of latent manifold and promises improved robustness against adversarial attacks. To verify the effectiveness of our proposed method, we conduct extensive experiments over different datasets (e.g., CIFAR-10, CIFAR-100, SVHN) with different adversarial attacks (e.g., PGD, CW), and show that our method substantially outperforms the state-of-the-art (e.g., Feature Scattering) in adversarial robustness by a large accuracy margin. The source codes are available at https://github.com/LitterQ/ATLD-pytorch

    The Paradox of Noise: An Empirical Study of Noise-Infusion Mechanisms to Improve Generalization, Stability, and Privacy in Federated Learning

    Full text link
    In a data-centric era, concerns regarding privacy and ethical data handling grow as machine learning relies more on personal information. This empirical study investigates the privacy, generalization, and stability of deep learning models in the presence of additive noise in federated learning frameworks. Our main objective is to provide strategies to measure the generalization, stability, and privacy-preserving capabilities of these models and further improve them. To this end, five noise infusion mechanisms at varying noise levels within centralized and federated learning settings are explored. As model complexity is a key component of the generalization and stability of deep learning models during training and evaluation, a comparative analysis of three Convolutional Neural Network (CNN) architectures is provided. The paper introduces Signal-to-Noise Ratio (SNR) as a quantitative measure of the trade-off between privacy and training accuracy of noise-infused models, aiming to find the noise level that yields optimal privacy and accuracy. Moreover, the Price of Stability and Price of Anarchy are defined in the context of privacy-preserving deep learning, contributing to the systematic investigation of the noise infusion strategies to enhance privacy without compromising performance. Our research sheds light on the delicate balance between these critical factors, fostering a deeper understanding of the implications of noise-based regularization in machine learning. By leveraging noise as a tool for regularization and privacy enhancement, we aim to contribute to the development of robust, privacy-aware algorithms, ensuring that AI-driven solutions prioritize both utility and privacy
    corecore