1,365 research outputs found

    Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos

    Full text link
    We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic drift. Our approach does not assume exhaustive labeling of each object instance in any single frame, or any explicit annotation of negative data. Working in such a generic setting allow us to tackle multiple object instances in video, many of which are static. In contrast, existing approaches either do not consider multiple object instances per video, or rely heavily on the motion of the objects present. The experiments demonstrate the effectiveness of our approach by evaluating the automatically labeled data on a variety of metrics like quality, coverage (recall), diversity, and relevance to training an object detector.Comment: To appear in CVPR 201

    Budget-aware Semi-Supervised Semantic and Instance Segmentation

    Get PDF
    Methods that move towards less supervised scenarios are key for image segmentation, as dense labels demand significant human intervention. Generally, the annotation burden is mitigated by labeling datasets with weaker forms of supervision, e.g. image-level labels or bounding boxes. Another option are semi-supervised settings, that commonly leverage a few strong annotations and a huge number of unlabeled/weakly-labeled data. In this paper, we revisit semi-supervised segmentation schemes and narrow down significantly the annotation budget (in terms of total labeling time of the training set) compared to previous approaches. With a very simple pipeline, we demonstrate that at low annotation budgets, semi-supervised methods outperform by a wide margin weakly-supervised ones for both semantic and instance segmentation. Our approach also outperforms previous semi-supervised works at a much reduced labeling cost. We present results for the Pascal VOC benchmark and unify weakly and semi-supervised approaches by considering the total annotation budget, thus allowing a fairer comparison between methods.Comment: To appear in CVPR-W 2019 (DeepVision workshop

    Learning to count with deep object features

    Full text link
    Learning to count is a learning strategy that has been recently proposed in the literature for dealing with problems where estimating the number of object instances in a scene is the final objective. In this framework, the task of learning to detect and localize individual object instances is seen as a harder task that can be evaded by casting the problem as that of computing a regression value from hand-crafted image features. In this paper we explore the features that are learned when training a counting convolutional neural network in order to understand their underlying representation. To this end we define a counting problem for MNIST data and show that the internal representation of the network is able to classify digits in spite of the fact that no direct supervision was provided for them during training. We also present preliminary results about a deep network that is able to count the number of pedestrians in a scene.Comment: This paper has been accepted at Deep Vision Workshop at CVPR 201
    corecore