24 research outputs found

    Customs Import Declaration Datasets

    Full text link
    Given the huge volume of cross-border flows, effective and efficient control of trade becomes more crucial in protecting people and society from illicit trade. However, limited accessibility of the transaction-level trade datasets hinders the progress of open research, and lots of customs administrations have not benefited from the recent progress in data-based risk management. In this paper, we introduce an import declaration dataset to facilitate the collaboration between domain experts in customs administrations and researchers from diverse domains, such as data science and machine learning. The dataset contains 54,000 artificially generated trades with 22 key attributes, and it is synthesized with conditional tabular GAN while maintaining correlated features. Synthetic data has several advantages. First, releasing the dataset is free from restrictions that do not allow disclosing the original import data. The fabrication step minimizes the possible identity risk which may exist in trade statistics. Second, the published data follow a similar distribution to the source data so that it can be used in various downstream tasks. Hence, our dataset can be used as a benchmark for testing the performance of any classification algorithm. With the provision of data and its generation process, we open baseline codes for fraud detection tasks, as we empirically show that more advanced algorithms can better detect fraud.Comment: Datasets: https://github.com/Seondong/Customs-Declaration-Dataset

    ColdGANs: Taming Language GANs with Cautious Sampling Strategies

    Full text link
    Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias, exacerbated by considering only the reference texts as correct, while in practice several alternative formulations could be as good. Generative Adversarial Networks (GANs) can mitigate those limitations but the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to underperform MLE. Departing from previous works, we analyze the exploration step in GANs applied to text generation, and show how classical sampling results in unstable training. We propose to consider alternative exploration strategies in a GAN framework that we name ColdGANs, where we force the sampling to be close to the distribution modes to get smoother learning dynamics. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on three generative tasks, namely unconditional text generation, question generation, and abstractive summarization
    corecore