28 research outputs found

    Training Deep Neural Networks via Direct Loss Minimization

    Full text link
    Supervised training of deep neural nets typically relies on minimizing cross-entropy. However, in many domains, we are interested in performing well on metrics specific to the application. In this paper we propose a direct loss minimization approach to train deep neural networks, which provably minimizes the application-specific loss function. This is often non-trivial, since these functions are neither smooth nor decomposable and thus are not amenable to optimization with standard gradient-based methods. We demonstrate the effectiveness of our approach in the context of maximizing average precision for ranking problems. Towards this goal, we develop a novel dynamic programming algorithm that can efficiently compute the weight updates. Our approach proves superior to a variety of baselines in the context of action classification and object detection, especially in the presence of label noise.Comment: ICML201

    Deep Structured Energy-Based Image Inpainting

    Full text link
    In this paper, we propose a structured image inpainting method employing an energy based model. In order to learn structural relationship between patterns observed in images and missing regions of the images, we employ an energy-based structured prediction method. The structural relationship is learned by minimizing an energy function which is defined by a simple convolutional neural network. The experimental results on various benchmark datasets show that our proposed method significantly outperforms the state-of-the-art methods which use Generative Adversarial Networks (GANs). We obtained 497.35 mean squared error (MSE) on the Olivetti face dataset compared to 833.0 MSE provided by the state-of-the-art method. Moreover, we obtained 28.4 dB peak signal to noise ratio (PSNR) on the SVHN dataset and 23.53 dB on the CelebA dataset, compared to 22.3 dB and 21.3 dB, provided by the state-of-the-art methods, respectively. The code is publicly available.Comment: Accepted to 24th International Conference on Pattern Recognition (ICPR 2018). 6 pages, 7 figure

    Learning Discriminators as Energy Networks in Adversarial Learning

    Full text link
    We propose a novel framework for structured prediction via adversarial learning. Existing adversarial learning methods involve two separate networks, i.e., the structured prediction models and the discriminative models, in the training. The information captured by discriminative models complements that in the structured prediction models, but few existing researches have studied on utilizing such information to improve structured prediction models at the inference stage. In this work, we propose to refine the predictions of structured prediction models by effectively integrating discriminative models into the prediction. Discriminative models are treated as energy-based models. Similar to the adversarial learning, discriminative models are trained to estimate scores which measure the quality of predicted outputs, while structured prediction models are trained to predict contrastive outputs with maximal energy scores. In this way, the gradient vanishing problem is ameliorated, and thus we are able to perform inference by following the ascent gradient directions of discriminative models to refine structured prediction models. The proposed method is able to handle a range of tasks, e.g., multi-label classification and image segmentation. Empirical results on these two tasks validate the effectiveness of our learning method

    Learning Surrogate Losses

    Full text link
    The minimization of loss functions is the heart and soul of Machine Learning. In this paper, we propose an off-the-shelf optimization approach that can minimize virtually any non-differentiable and non-decomposable loss function (e.g. Miss-classification Rate, AUC, F1, Jaccard Index, Mathew Correlation Coefficient, etc.) seamlessly. Our strategy learns smooth relaxation versions of the true losses by approximating them through a surrogate neural network. The proposed loss networks are set-wise models which are invariant to the order of mini-batch instances. Ultimately, the surrogate losses are learned jointly with the prediction model via bilevel optimization. Empirical results on multiple datasets with diverse real-life loss functions compared with state-of-the-art baselines demonstrate the efficiency of learning surrogate losses

    Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs

    Full text link
    We approach structured output prediction by optimizing a deep value network (DVN) to precisely estimate the task loss on different output configurations for a given input. Once the model is trained, we perform inference by gradient descent on the continuous relaxations of the output variables to find outputs with promising scores from the value network. When applied to image segmentation, the value network takes an image and a segmentation mask as inputs and predicts a scalar estimating the intersection over union between the input and ground truth masks. For multi-label classification, the DVN's objective is to correctly predict the F1 score for any potential label configuration. The DVN framework achieves the state-of-the-art results on multi-label prediction and image segmentation benchmarks.Comment: Published at ICML 201

    Deep Structured Prediction with Nonlinear Output Transformations

    Full text link
    Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.Comment: Appearing in NIPS 201

    Few-Shot Learning Through an Information Retrieval Lens

    Full text link
    Few-shot learning refers to understanding new concepts from only a few examples. We propose an information retrieval-inspired approach for this problem that is motivated by the increased importance of maximally leveraging all the available information in this low-data regime. We define a training objective that aims to extract as much information as possible from each training batch by effectively optimizing over all relative orderings of the batch points simultaneously. In particular, we view each batch point as a `query' that ranks the remaining ones based on its predicted relevance to them and we define a model within the framework of structured prediction to optimize mean Average Precision over these rankings. Our method achieves impressive results on the standard few-shot classification benchmarks while is also capable of few-shot retrieval

    Learning to Teach with Dynamic Loss Functions

    Full text link
    Teaching is critical to human society: it is with teaching that prospective students are educated and human civilization can be inherited and advanced. A good teacher not only provides his/her students with qualified teaching materials (e.g., textbooks), but also sets up appropriate learning objectives (e.g., course projects and exams) considering different situations of a student. When it comes to artificial intelligence, treating machine learning models as students, the loss functions that are optimized act as perfect counterparts of the learning objective set by the teacher. In this work, we explore the possibility of imitating human teaching behaviors by dynamically and automatically outputting appropriate loss functions to train machine learning models. Different from typical learning settings in which the loss function of a machine learning model is predefined and fixed, in our framework, the loss function of a machine learning model (we call it student) is defined by another machine learning model (we call it teacher). The ultimate goal of teacher model is cultivating the student to have better performance measured on development dataset. Towards that end, similar to human teaching, the teacher, a parametric model, dynamically outputs different loss functions that will be used and optimized by its student model at different training stages. We develop an efficient learning method for the teacher model that makes gradient based optimization possible, exempt of the ineffective solutions such as policy optimization. We name our method as "learning to teach with dynamic loss functions" (L2T-DLF for short). Extensive experiments on real world tasks including image classification and neural machine translation demonstrate that our method significantly improves the quality of various student models.Comment: NIPS 201

    Task-based End-to-end Model Learning in Stochastic Optimization

    Full text link
    With the increasing popularity of machine learning techniques, it has become common to see prediction algorithms operating within some larger process. However, the criteria by which we train these algorithms often differ from the ultimate criteria on which we evaluate them. This paper proposes an end-to-end approach for learning probabilistic machine learning models in a manner that directly captures the ultimate task-based objective for which they will be used, within the context of stochastic programming. We present three experimental evaluations of the proposed approach: a classical inventory stock problem, a real-world electrical grid scheduling task, and a real-world energy storage arbitrage task. We show that the proposed approach can outperform both traditional modeling and purely black-box policy optimization approaches in these applications.Comment: In NIPS 2017. Code available at https://github.com/locuslab/e2e-model-learnin

    Dissimilarity Coefficient based Weakly Supervised Object Detection

    Full text link
    We consider the problem of weakly supervised object detection, where the training samples are annotated using only image-level labels that indicate the presence or absence of an object category. In order to model the uncertainty in the location of the objects, we employ a dissimilarity coefficient based probabilistic learning objective. The learning objective minimizes the difference between an annotation agnostic prediction distribution and an annotation aware conditional distribution. The main computational challenge is the complex nature of the conditional distribution, which consists of terms over hundreds or thousands of variables. The complexity of the conditional distribution rules out the possibility of explicitly modeling it. Instead, we exploit the fact that deep learning frameworks rely on stochastic optimization. This allows us to use a state of the art discrete generative model that can provide annotation consistent samples from the conditional distribution. Extensive experiments on PASCAL VOC 2007 and 2012 data sets demonstrate the efficacy of our proposed approach.Comment: Preprin
    corecore