1,836 research outputs found

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    Leave No Stone Unturned: Mine Extra Knowledge for Imbalanced Facial Expression Recognition

    Full text link
    Facial expression data is characterized by a significant imbalance, with most collected data showing happy or neutral expressions and fewer instances of fear or disgust. This imbalance poses challenges to facial expression recognition (FER) models, hindering their ability to fully understand various human emotional states. Existing FER methods typically report overall accuracy on highly imbalanced test sets but exhibit low performance in terms of the mean accuracy across all expression classes. In this paper, our aim is to address the imbalanced FER problem. Existing methods primarily focus on learning knowledge of minor classes solely from minor-class samples. However, we propose a novel approach to extract extra knowledge related to the minor classes from both major and minor class samples. Our motivation stems from the belief that FER resembles a distribution learning task, wherein a sample may contain information about multiple classes. For instance, a sample from the major class surprise might also contain useful features of the minor class fear. Inspired by that, we propose a novel method that leverages re-balanced attention maps to regularize the model, enabling it to extract transformation invariant information about the minor classes from all training samples. Additionally, we introduce re-balanced smooth labels to regulate the cross-entropy loss, guiding the model to pay more attention to the minor classes by utilizing the extra information regarding the label distribution of the imbalanced training data. Extensive experiments on different datasets and backbones show that the two proposed modules work together to regularize the model and achieve state-of-the-art performance under the imbalanced FER task. Code is available at https://github.com/zyh-uaiaaaa.Comment: Accepted by NeurIPS202

    Hey Human, If your Facial Emotions are Uncertain, You Should Use Bayesian Neural Networks!

    Full text link
    Facial emotion recognition is the task to classify human emotions in face images. It is a difficult task due to high aleatoric uncertainty and visual ambiguity. A large part of the literature aims to show progress by increasing accuracy on this task, but this ignores the inherent uncertainty and ambiguity in the task. In this paper we show that Bayesian Neural Networks, as approximated using MC-Dropout, MC-DropConnect, or an Ensemble, are able to model the aleatoric uncertainty in facial emotion recognition, and produce output probabilities that are closer to what a human expects. We also show that calibration metrics show strange behaviors for this task, due to the multiple classes that can be considered correct, which motivates future work. We believe our work will motivate other researchers to move away from Classical and into Bayesian Neural Networks.Comment: 10 pages, 7 figures, Women in Computer Vision @ ECCV 2020 camera read
    • …
    corecore