319 research outputs found

    EraseReLU: A Simple Way to Ease the Training of Deep Convolution Neural Networks

    Full text link
    For most state-of-the-art architectures, Rectified Linear Unit (ReLU) becomes a standard component accompanied with each layer. Although ReLU can ease the network training to an extent, the character of blocking negative values may suppress the propagation of useful information and leads to the difficulty of optimizing very deep Convolutional Neural Networks (CNNs). Moreover, stacking layers with nonlinear activations is hard to approximate the intrinsic linear transformations between feature representations. In this paper, we investigate the effect of erasing ReLUs of certain layers and apply it to various representative architectures following deterministic rules. It can ease the optimization and improve the generalization performance for very deep CNN models. We find two key factors being essential to the performance improvement: 1) the location where ReLU should be erased inside the basic module; 2) the proportion of basic modules to erase ReLU; We show that erasing the last ReLU layer of all basic modules in a network usually yields improved performance. In experiments, our approach successfully improves the performance of various representative architectures, and we report the improved results on SVHN, CIFAR-10/100, and ImageNet. Moreover, we achieve competitive single-model performance on CIFAR-100 with 16.53% error rate compared to state-of-the-art

    MBS: Macroblock Scaling for CNN Model Reduction

    Full text link
    In this paper we propose the macroblock scaling (MBS) algorithm, which can be applied to various CNN architectures to reduce their model size. MBS adaptively reduces each CNN macroblock depending on its information redundancy measured by our proposed effective flops. Empirical studies conducted with ImageNet and CIFAR-10 attest that MBS can reduce the model size of some already compact CNN models, e.g., MobileNetV2 (25.03% further reduction) and ShuffleNet (20.74%), and even ultra-deep ones such as ResNet-101 (51.67%) and ResNet-1202 (72.71%) with negligible accuracy degradation. MBS also performs better reduction at a much lower cost than the state-of-the-art optimization-based methods do. MBS's simplicity and efficiency, its flexibility to work with any CNN model, and its scalability to work with models of any depth make it an attractive choice for CNN model size reduction.Comment: 8 pages (Accepted by CVPR'19

    Deep Predictive Coding Network with Local Recurrent Processing for Object Recognition

    Full text link
    Inspired by "predictive coding" - a theory in neuroscience, we develop a bi-directional and dynamic neural network with local recurrent processing, namely predictive coding network (PCN). Unlike feedforward-only convolutional neural networks, PCN includes both feedback connections, which carry top-down predictions, and feedforward connections, which carry bottom-up errors of prediction. Feedback and feedforward connections enable adjacent layers to interact locally and recurrently to refine representations towards minimization of layer-wise prediction errors. When unfolded over time, the recurrent processing gives rise to an increasingly deeper hierarchy of non-linear transformation, allowing a shallow network to dynamically extend itself into an arbitrarily deep network. We train and test PCN for image classification with SVHN, CIFAR and ImageNet datasets. Despite notably fewer layers and parameters, PCN achieves competitive performance compared to classical and state-of-the-art models. Further analysis shows that the internal representations in PCN converge over time and yield increasingly better accuracy in object recognition. Errors of top-down prediction also reveal visual saliency or bottom-up attention.Comment: 12 pages, 3 figure

    A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference

    Full text link
    Artificial Neural Networks are connectionist systems that perform a given task by learning on examples without having prior knowledge about the task. This is done by finding an optimal point estimate for the weights in every node. Generally, the network using point estimates as weights perform well with large datasets, but they fail to express uncertainty in regions with little or no data, leading to overconfident decisions. In this paper, Bayesian Convolutional Neural Network (BayesCNN) using Variational Inference is proposed, that introduces probability distribution over the weights. Furthermore, the proposed BayesCNN architecture is applied to tasks like Image Classification, Image Super-Resolution and Generative Adversarial Networks. The results are compared to point-estimates based architectures on MNIST, CIFAR-10 and CIFAR-100 datasets for Image CLassification task, on BSD300 dataset for Image Super Resolution task and on CIFAR10 dataset again for Generative Adversarial Network task. BayesCNN is based on Bayes by Backprop which derives a variational approximation to the true posterior. We, therefore, introduce the idea of applying two convolutional operations, one for the mean and one for the variance. Our proposed method not only achieves performances equivalent to frequentist inference in identical architectures but also incorporate a measurement for uncertainties and regularisation. It further eliminates the use of dropout in the model. Moreover, we predict how certain the model prediction is based on the epistemic and aleatoric uncertainties and empirically show how the uncertainty can decrease, allowing the decisions made by the network to become more deterministic as the training accuracy increases. Finally, we propose ways to prune the Bayesian architecture and to make it more computational and time effective.Comment: arXiv admin note: text overlap with arXiv:1506.02158, arXiv:1703.04977 by other author

    C3AE: Exploring the Limits of Compact Model for Age Estimation

    Full text link
    Age estimation is a classic learning problem in computer vision. Many larger and deeper CNNs have been proposed with promising performance, such as AlexNet, VggNet, GoogLeNet and ResNet. However, these models are not practical for the embedded/mobile devices. Recently, MobileNets and ShuffleNets have been proposed to reduce the number of parameters, yielding lightweight models. However, their representation has been weakened because of the adoption of depth-wise separable convolution. In this work, we investigate the limits of compact model for small-scale image and propose an extremely Compact yet efficient Cascade Context-based Age Estimation model(C3AE). This model possesses only 1/9 and 1/2000 parameters compared with MobileNets/ShuffleNets and VggNet, while achieves competitive performance. In particular, we re-define age estimation problem by two-points representation, which is implemented by a cascade model. Moreover, to fully utilize the facial context information, multi-branch CNN network is proposed to aggregate multi-scale context. Experiments are carried out on three age estimation datasets. The state-of-the-art performance on compact model has been achieved with a relatively large margin.Comment: accepted by cvpr201

    First-order Adversarial Vulnerability of Neural Networks and Input Dimension

    Full text link
    Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. Surprisingly, vulnerability does not depend on network topology: for many standard network architectures, we prove that at initialization, the â„“1\ell_1-norm of these gradients grows as the square root of the input dimension, leaving the networks increasingly vulnerable with growing image size. We empirically show that this dimension dependence persists after either usual or robust training, but gets attenuated with higher regularization.Comment: Paper previously called: "Adversarial Vulnerability of Neural Networks Increases with Input Dimension". 9 pages main text and references, 11 pages appendix, 14 figure

    Demand Forecasting from Spatiotemporal Data with Graph Networks and Temporal-Guided Embedding

    Full text link
    Short-term demand forecasting models commonly combine convolutional and recurrent layers to extract complex spatiotemporal patterns in data. Long-term histories are also used to consider periodicity and seasonality patterns as time series data. In this study, we propose an efficient architecture, Temporal-Guided Network (TGNet), which utilizes graph networks and temporal-guided embedding. Graph networks extract invariant features to permutations of adjacent regions instead of convolutional layers. Temporal-guided embedding explicitly learns temporal contexts from training data and is substituted for the input of long-term histories from days/weeks ago. TGNet learns an autoregressive model, conditioned on temporal contexts of forecasting targets from temporal-guided embedding. Finally, our model achieves competitive performances with other baselines on three spatiotemporal demand dataset from real-world, but the number of trainable parameters is about 20 times smaller than a state-of-the-art baseline. We also show that temporal-guided embedding learns temporal contexts as intended and TGNet has robust forecasting performances even to atypical event situations.Comment: NeurIPS 2018 Workshop on Modeling and Decision-Making in the Spatiotemporal Domai

    Towards Optimal Structured CNN Pruning via Generative Adversarial Learning

    Full text link
    Structured pruning of filters or neurons has received increased focus for compressing convolutional neural networks. Most existing methods rely on multi-stage optimizations in a layer-wise manner for iteratively pruning and retraining which may not be optimal and may be computation intensive. Besides, these methods are designed for pruning a specific structure, such as filter or block structures without jointly pruning heterogeneous structures. In this paper, we propose an effective structured pruning approach that jointly prunes filters as well as other structures in an end-to-end manner. To accomplish this, we first introduce a soft mask to scale the output of these structures by defining a new objective function with sparsity regularization to align the output of baseline and network with this mask. We then effectively solve the optimization problem by generative adversarial learning (GAL), which learns a sparse soft mask in a label-free and an end-to-end manner. By forcing more scaling factors in the soft mask to zero, the fast iterative shrinkage-thresholding algorithm (FISTA) can be leveraged to fast and reliably remove the corresponding structures. Extensive experiments demonstrate the effectiveness of GAL on different datasets, including MNIST, CIFAR-10 and ImageNet ILSVRC 2012. For example, on ImageNet ILSVRC 2012, the pruned ResNet-50 achieves 10.88\% Top-5 error and results in a factor of 3.7x speedup. This significantly outperforms state-of-the-art methods.Comment: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR

    CR-Fill: Generative Image Inpainting with Auxiliary Contexutal Reconstruction

    Full text link
    Recent deep generative inpainting methods use attention layers to allow the generator to explicitly borrow feature patches from the known region to complete a missing region. Due to the lack of supervision signals for the correspondence between missing regions and known regions, it may fail to find proper reference features, which often leads to artifacts in the results. Also, it computes pair-wise similarity across the entire feature map during inference bringing a significant computational overhead. To address this issue, we propose to teach such patch-borrowing behavior to an attention-free generator by joint training of an auxiliary contextual reconstruction task, which encourages the generated output to be plausible even when reconstructed by surrounding regions. The auxiliary branch can be seen as a learnable loss function, i.e. named as contextual reconstruction (CR) loss, where query-reference feature similarity and reference-based reconstructor are jointly optimized with the inpainting generator. The auxiliary branch (i.e. CR loss) is required only during training, and only the inpainting generator is required during the inference. Experimental results demonstrate that the proposed inpainting model compares favourably against the state-of-the-art in terms of quantitative and visual performance

    Deep Learning Based Spatial User Mapping on Extra Large MIMO Arrays

    Full text link
    In an extra-large scale MIMO (XL-MIMO) system, the antenna arrays have a large physical size that goes beyond the dimensions in traditional MIMO systems. Because of this large dimensionality, the optimization of an XL-MIMO system leads to solutions with prohibitive complexity when relying on conventional optimization tools. In this paper, we propose a design based on machine learning for the downlink of a multi-user setting with linear pre-processing, where the goal is to select a limited mapping area per user, i.e. a small portion of the array that contains the beamforming energy to the user. We refer to this selection as spatial user mapping (SUM). Our solution relies on learning using deep convolutional neural networks with a distributed architecture that is built to manage the large system dimension. This architecture contains one network per user where all the networks work in parallel and exploit specific non-stationary properties of the channels along the array. Our results show that, once the parallel networks are trained, they provide the optimal SUM solution in more than 80%80\% of the instances, resulting in a negligible sum-rate loss compared to a system using the optimal SUM solution while providing an insightful approach to rethink these kinds of problems that have no closed-form solution
    • …
    corecore