886,343 research outputs found
National Air Traffic Services
National Air Traffic Services (NATS) are concerned with ensuring low probabilities of errors in determining aircraft positions. In general, error probabilities depend on the tails of some probability distributions for which there has been no theoretical model. Analysis of radar performance is regularly undertaken by NATS to ensure radar performance is within safety limits, with the maximum range being dependent on the declared separation between aircraft. NATS brought two questions to the Study Group, involving the horizontal (azimuthal) errors in radar data and the vertical errors in altimetry system data. In both cases, NATS asked the Study Group to analyse the data and assess whether the probability distributions that are currently used are good models for the errors
Characterisation of real GPRS traffic with analytical tools
With GPRS and UMTS networks lunched, wireless multimedia services are commercially becoming the most attractive applications next to voice. Because of the nature of bursty, packet-switched schemes and multiple data rates, the traditional Erlang approach and Poisson models for characterising voice-centric services traffic are not suitable for studying wireless multimedia services traffic. Therefore, research on the characterisation of wireless multimedia services traffic is very challenging. The typical reference for the study of wireless multimedia services traffic is wired Internet services traffic. However, because of the differences in network protocol, bandwidth, and QoS requirements between wired and wireless services, their traffic characterisations may not be similar. Wired network Internet traffic shows self-similarity, long-range dependence and its file sizes exhibit heavy-tailedness. This paper reports the use of existing tools to analyse real GPRS traffic data to establish whether wireless multimedia services traffic have similar properties as wired Internet services traffic
Car-to-Cloud Communication Traffic Analysis Based on the Common Vehicle Information Model
Although connectivity services have been introduced already today in many of
the most recent car models, the potential of vehicles serving as highly mobile
sensor platform in the Internet of Things (IoT) has not been sufficiently
exploited yet. The European AutoMat project has therefore defined an open
Common Vehicle Information Model (CVIM) in combination with a cross-industry,
cloud-based big data marketplace. Thereby, vehicle sensor data can be leveraged
for the design of entirely new services even beyond traffic-related
applications (such as localized weather forecasts). This paper focuses on the
prediction of the achievable data rate making use of an analytical model based
on empirical measurements. For an in-depth analysis, the CVIM has been
integrated in a vehicle traffic simulator to produce CVIM-complaint data
streams as a result of the individual behavior of each vehicle (speed, brake
activity, steering activity, etc.). In a next step, a simulation of vehicle
traffic in a realistically modeled, large-area street network has been used in
combination with a cellular Long Term Evolution (LTE) network to determine the
cumulated amount of data produced within each network cell. As a result, a new
car-to-cloud communication traffic model has been derived, which quantifies the
data rate of aggregated car-to-cloud data producible by vehicles depending on
the current traffic situations (free flow and traffic jam). The results provide
a reference for network planning and resource scheduling for car-to-cloud type
services in the context of smart cities
Non-urban mobile radio market demand forecast
A national nonmetropolitan land mobile traffic model for 1990-2000 addresses user classes, density classes, traffic mix statistics, distance distribution, geographic distribution, price elasticity, and service quality elasticity. Traffic demands for business, special industrial, and police were determined on the basis of surveys in 73 randomly selected nonurban counties. The selected services represent 69% of total demand. The results were extrapolated to all services in the non-SMSA areas of the contiguous United States. Radiotelephone services were considered separately. Total non-SMSA mobile radio demand (one way) estimates are given. General functional requirements include: hand portability, privacy, reduction of blind spots, two way data transmission, position location, slow scan imagery
Customer premises services market demand assessment 1980 - 2000. Volume 1: Executive summary
Estimates of market demand for domestic civilian telecommunications services for the years 1980 to 2000 are provided. Overall demand, demand or satellite services, demand for satellite delivered Customer Premises Service (CPS), and demand for 30/20 GHz Customer Premises Services are covered. Emphasis is placed on the CPS market and demand is segmented by market, by service, by user class and by geographic region. Prices for competing services are discussed and the distribution of traffic with respect to distance is estimated. A nationwide traffic distribution model for CPS in terms of demand for CPS traffic and earth stations for each of the major SMSAs in the United States are provided
Throughput analysis of the IEEE 802.4 token bus standard under heavy load
It has become clear in the last few years that there is a trend towards integrated digital services. Parallel to the development of public Integrated Services Digital Network (ISDN) is service integration in the local area (e.g., a campus, a building, an aircraft). The types of services to be integrated depend very much on the specific local environment. However, applications tend to generate data traffic belonging to one of two classes. According to IEEE 802.4 terminology, the first major class of traffic is termed synchronous, such as packetized voice and data generated from other applications with real-time constraints, and the second class is called asynchronous which includes most computer data traffic such as file transfer or facsimile. The IEEE 802.4 token bus protocol which was designed to support both synchronous and asynchronous traffic is examined. The protocol is basically a timer-controlled token bus access scheme. By a suitable choice of the design parameters, it can be shown that access delay is bounded for synchronous traffic. As well, the bandwidth allocated to asynchronous traffic can be controlled. A throughput analysis of the protocol under heavy load with constant channel occupation of synchronous traffic and constant token-passing times is presented
Privacy in (mobile) telecommunications services
Telecommunications services are for long subject to privacy regulations. At stake are traditionally: privacy of the communication and the protection of traffic data. Privacy of the communication is legally founded. Traffic data subsume under the notion of data protection and are central in the discussion.
The telecommunications environment is profoundly changing. The traditionally closed markets with closed networks change into an open market with open networks. Within these open networks more privacy sensitive data are generated and have to be exchanged between growing numbers of parties. Also telecommunications and computer networks are rapidly being integrated and thus the distinction between telephony and computing disappears. Traditional telecommunications privacy regulations are revised to cover internet applications.
In this paper telecommunications issues are recalled to aid the on-going debate.
Cellular mobile phones have recently be introduced. Cellular networks process a particular category of traffic data namely location data, thereby introducing the issue of territorial privacy into the telecommunications domain. Location data are bound to be used for pervasive future services. Designs for future services are discussed and evaluated for their impact on privacy protection.</p
The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices
The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented
- …
