601 research outputs found

    Cellular Offloading via Downlink Cache Placement

    Full text link
    In this paper, the downlink file transmission within a finite lifetime is optimized with the assistance of wireless cache nodes. Specifically, the number of requests within the lifetime of one file is modeled as a Poisson point process. The base station multicasts files to downlink users and the selected the cache nodes, so that the cache nodes can help to forward the files in the next file request. Thus we formulate the downlink transmission as a Markov decision process with random number of stages, where transmission power and time on each transmission are the control policy. Due to random number of file transmissions, we first proposed a revised Bellman's equation, where the optimal control policy can be derived. In order to address the prohibitively huge state space, we also introduce a low-complexity sub-optimal solution based on an linear approximation of the value function. The approximated value function can be calculated analytically, so that conventional numerical value iteration can be eliminated. Moreover, the gap between the approximated value function and the real value function is bounded analytically. It is shown by simulation that, with the approximated MDP approach, the proposed algorithm can significantly reduce the resource consumption at the base station.Comment: Submitted for IEEE ICC 201

    Offloading cellular traffic through opportunistic communications: analysis and optimization

    Get PDF
    Offloading traffic through opportunistic communications has been recently proposed as a way to relieve the current overload of cellular networks. Opportunistic communication can occur when mobile device users are (temporarily) in each other's proximity, such that the devices can establish a local peer-to-peer connection (e.g., via WLAN or Bluetooth). Since opportunistic communication is based on the spontaneous mobility of the participants, it is inherently unreliable. This poses a serious challenge to the design of any cellular offloading solutions, that must meet the applications' requirements. In this paper, we address this challenge from an optimization analysis perspective, in contrast to the existing heuristic solutions. We first model the dissemination of content (injected through the cellular interface) in an opportunistic network with heterogeneous node mobility. Then, based on this model, we derive the optimal content injection strategy, which minimizes the load of the cellular network while meeting the applications' constraints. Finally, we propose an adaptive algorithm based on control theory that implements this optimal strategy without requiring any data on the mobility patterns or the mobile nodes' contact rates. The proposed approach is extensively evaluated with both a heterogeneous mobility model as well as real-world contact traces, showing that it substantially outperforms previous approaches proposed in the literature.This work has been sponsored by the HyCloud project, supported by Microsoft Innovation Cluster for Embedded Software (ICES), and by the EU H2020-ICT-2014-2 Flex5Gware project, no. 671563
    • …
    corecore