48,108 research outputs found

    Total Recall: Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks

    Full text link
    Recognizing Traffic Signs using intelligent systems can drastically reduce the number of accidents happening world-wide. With the arrival of Self-driving cars it has become a staple challenge to solve the automatic recognition of Traffic and Hand-held signs in the major streets. Various machine learning techniques like Random Forest, SVM as well as deep learning models has been proposed for classifying traffic signs. Though they reach state-of-the-art performance on a particular data-set, but fall short of tackling multiple Traffic Sign Recognition benchmarks. In this paper, we propose a novel and one-for-all architecture that aces multiple benchmarks with better overall score than the state-of-the-art architectures. Our model is made of residual convolutional blocks with hierarchical dilated skip connections joined in steps. With this we score 99.33% Accuracy in German sign recognition benchmark and 99.17% Accuracy in Belgian traffic sign classification benchmark. Moreover, we propose a newly devised dilated residual learning representation technique which is very low in both memory and computational complexity

    VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection

    Full text link
    Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method

    Object Recognition from very few Training Examples for Enhancing Bicycle Maps

    Full text link
    In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.Comment: Submitted to IV 2018. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualization and Social Computing
    • …
    corecore