9,258 research outputs found

    Peer-assisted location authentication and access control for wireless networks

    Get PDF
    This paper presents the development and implementation of a location‐based, lightweight peer‐assisted authentication scheme for use in wireless networks. The notion of peer‐assisted authentication is based upon some target user equipment‐ (UE) seeking authentication and access to a network based upon its physical location. The target UE seeks authentication through the UE of peers in the same network. Compared with previous work, the approach in this paper does not rely on any cryptographic proofs from a central authentication infrastructure, thus avoiding complex infrastructure management. However, the peer‐assisted authentication consumes network channel resources which will impact on network performance. In this paper, we also present an access control algorithm for balancing the location authentication, network quality of service (QoS), network capacity and time delay. The results demonstrate that peer‐assisted authentication considering location authentication and system QoS through dynamic access control strategies can be effectively and efficiently implemented in a number of use cases

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    The Android Platform Security Model

    Full text link
    Android is the most widely deployed end-user focused operating system. With its growing set of use cases encompassing communication, navigation, media consumption, entertainment, finance, health, and access to sensors, actuators, cameras, or microphones, its underlying security model needs to address a host of practical threats in a wide variety of scenarios while being useful to non-security experts. The model needs to strike a difficult balance between security, privacy, and usability for end users, assurances for app developers, and system performance under tight hardware constraints. While many of the underlying design principles have implicitly informed the overall system architecture, access control mechanisms, and mitigation techniques, the Android security model has previously not been formally published. This paper aims to both document the abstract model and discuss its implications. Based on a definition of the threat model and Android ecosystem context in which it operates, we analyze how the different security measures in past and current Android implementations work together to mitigate these threats. There are some special cases in applying the security model, and we discuss such deliberate deviations from the abstract model
    corecore