5,038 research outputs found

    Traffic monitoring using video analytics in clouds

    Get PDF
    Traffic monitoring is a challenging task on crowded roads. Traditional traffic monitoring procedures are manual, expensive, time consuming and involve human operators. They are subjective due to the very involvement of human factor and sometimes provide inaccurate/incomplete monitoring results. Large scale storage and analysis of video streams were not possible due to limited availability of storage and compute resources in the past. Recent advances in data storage, processing and communications have made it possible to store and process huge volumes of video data and develop applications that are neither subjective nor limited in feature sets. It is now possible to implement object detection and tracking, behavioural analysis of traffic patterns, number plate recognition and automate security and surveillance on video streams produced by traffic monitoring and surveillance cameras. In this paper, we present a video stream acquisition, processing and analytics framework in the clouds to address some of the traffic monitoring challenges mentioned above. This framework provides an end-to-end solution for video stream capture, storage and analysis using a cloud based GPU cluster. The framework empowers traffic control room operators by automating the process of vehicle identification and finding events of interest from the recorded video streams. An operator only specifies the analysis criteria and the duration of video streams to analyse. The video streams are then automatically fetched from the cloud storage, decoded and analysed on a Hadoop based GPU cluster without operator intervention in our framework. It reduces the latencies in video analysis process by porting its compute intensive parts to the GPU cluster. The framework is evaluated with one month of recorded video streams data on a cloud based GPU cluster. The results show a speedup of 14 times on a GPU and 4 times on a CPU when compared with one human operator analysing the same amount of video streams data

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore