612,469 research outputs found
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
Characteristics of Vehicular Traffic Flow at a Roundabout
We construct a stochastic cellular automata model for the description of
vehicular traffic at a roundabout designed at the intersection of two
perpendicular streets. The vehicular traffic is controlled by a self-organized
scheme in which traffic lights are absent. This controlling method incorporates
a yield-at-entry strategy for the approaching vehicles to the circulating
traffic flow in the roundabout. Vehicular dynamics is simulated within the
framework of the probabilistic cellular automata and the delay experienced by
the traffic at each individual street is evaluated for specified time
intervals. We discuss the impact of the geometrical properties of the
roundabout on the total delay. We compare our results with traffic-light
signalisation schemes, and obtain the critical traffic volume over which the
intersection is optimally controlled through traffic light signalisation
schemes.Comment: 10 pages, 17 eps figures. arXiv admin note: text overlap with
arXiv:cond-mat/040107
A fully-discrete-state kinetic theory approach to modeling vehicular traffic
This paper presents a new mathematical model of vehicular traffic, based on
the methods of the generalized kinetic theory, in which the space of
microscopic states (position and velocity) of the vehicles is genuinely
discrete. While in the recent literature discrete-velocity kinetic models of
car traffic have already been successfully proposed, this is, to our knowledge,
the first attempt to account for all aspects of the physical granularity of car
flow within the formalism of the aforesaid mathematical theory. Thanks to a
rich but handy structure, the resulting model allows one to easily implement
and simulate various realistic scenarios giving rise to characteristic traffic
phenomena of practical interest (e.g., queue formation due to roadworks or to a
traffic light). Moreover, it is analytically tractable under quite general
assumptions, whereby fundamental properties of the solutions can be rigorously
proved.Comment: 22 pages, 3 figure
A Windowed Transportation Planning Model
This research develops and applies a transportation planning model that integrates regional and local area forecasting approaches. While regional models have the scope to model the interaction of demand and congestion, they lack the spatial detail of a local approach. Local approaches typically do not consider the feedback between new project traffic and existing levels of traffic. Using a window, which retains the regional trip distribution information and the consistency between travel demand and congestion, allows the use of a complete transportation network and block level traffic zones while retaining computational feasibility. By combining the two methods, a number of important policy issues can be addressed, including the implications of traffic calming, changes in flow due to alternative traffic operation schemes, the influence of micro-scale zoning changes on nearby intersections, the impact of TDM on traffic congestion, and the consequences of a suburban light rail line.transportation planning model, traffic impact study, travel demand model, intersection control, window .
- …
