3 research outputs found

    Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research

    Get PDF
    The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction

    Extending time series forecasting methods using functional principal components analysis

    Get PDF
    Traffic volume forecasts are used by many transportation analysis and management systems to better characterize and react to fluctuating traffic patterns. Most current forecasting methods do not take advantage of the underlying functional characteristics of the time series to make predictions. This paper presents a methodology that uses Functional Principal Components Analysis (FPCA) to create smooth and differentiable daily traffic forecasts. The methodology is validated with a data set of 1,813 days of 15 minute aggregated traffic volume time series. Both the FPCA based forecasts and the associated prediction intervals outperform traditional Seasonal Autoregressive Integrated Moving Average (SARIMA) based methods --Abstract, page iii
    corecore