50,991 research outputs found
Bayesian Reconstruction of Missing Observations
We focus on an interpolation method referred to Bayesian reconstruction in
this paper. Whereas in standard interpolation methods missing data are
interpolated deterministically, in Bayesian reconstruction, missing data are
interpolated probabilistically using a Bayesian treatment. In this paper, we
address the framework of Bayesian reconstruction and its application to the
traffic data reconstruction problem in the field of traffic engineering. In the
latter part of this paper, we describe the evaluation of the statistical
performance of our Bayesian traffic reconstruction model using a statistical
mechanical approach and clarify its statistical behavior
Reconstructing the Traffic State by Fusion of Heterogeneous Data
We present an advanced interpolation method for estimating smooth
spatiotemporal profiles for local highway traffic variables such as flow, speed
and density. The method is based on stationary detector data as typically
collected by traffic control centres, and may be augmented by floating car data
or other traffic information. The resulting profiles display transitions
between free and congested traffic in great detail, as well as fine structures
such as stop-and-go waves. We establish the accuracy and robustness of the
method and demonstrate three potential applications: 1. compensation for gaps
in data caused by detector failure; 2. separation of noise from dynamic traffic
information; and 3. the fusion of floating car data with stationary detector
data.Comment: For more information see http://www.mtreiber.de or
http://www.akesting.d
Trajectory Reconstruction Techniques for Evaluation of ATC Systems
This paper is focused on trajectory reconstruction techniques for evaluating ATC systems, using real data of recorded opportunity traffic. We analyze different alternatives for this problem, from traditional interpolation approaches based on curve fitting to our proposed schemes based on modeling regular motion patterns with optimal smoothers. The extraction of trajectory features such as motion type (or mode of flight), maneuvers profile, geometric parameters, etc., allows a more accurate computation of the curve and the detailed evaluation of the data processors used in the ATC centre. Different alternatives will be compared with some performance results obtained with simulated and real data sets
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model
The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the
Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental
diagram curves, each of which represents a class of drivers with a different
empty road velocity. A weakness of this approach is that different drivers
possess vastly different densities at which traffic flow stagnates. This
drawback can be overcome by modifying the pressure relation in the ARZ model,
leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach
to determine the parameter functions of the GARZ model from fundamental diagram
measurement data. The predictive accuracy of the resulting data-fitted GARZ
model is compared to other traffic models by means of a three-detector test
setup, employing two types of data: vehicle trajectory data, and sensor data.
This work also considers the extension of the ARZ and the GARZ models to models
with a relaxation term, and conducts an investigation of the optimal relaxation
time.Comment: 30 pages, 10 figures, 3 table
Use of Kriging Technique to Study Roundabout Performance
Road intersections are dangerous places because of the many conflicting points between
motorized and nonmotorized vehicles. In the case of defined traffic volume, several research
groups have proved that roundabouts reduced the number of injuries and fatal accident cases.
In recent years, many countries have adopted roundabouts as a standard design solution for
both urban and rural roads. Several recent studies have investigated the performance of
roundabouts, including some with models that calculated the entering flow (Q sub e) as a
function of the circulating flow (Q sub c). Most existing models have been constructed with the
use of linear or exponential statistical regression. The interpolative techniques in classical
statistics are based on the use of canonical forms (linear or polynomial) that completely ignore
the correlation law between collected data. As such, the determined interpolation stems from
the assumption that the data represent a random sample. In the research reported in this
paper, a geostatistical approach was considered: the relationship Q sub e versus Q sub c is
supposed to be a regionalized phenomenon. According to that supposition, collected data do
not represent a random sample of values but are supposed to be related to each other with a
defined law. This recognition allows the realization of interpolation on the basis of the real law of
the phenomenon. This paper discusses the fundamental theories, the applied operating
procedures, and the first results obtained in modeling the Q sub e versus Q sub c relationship
with the application of geostatistics
Bridge damage detection based on vibration data: past and new developments
Overtime, bridge condition declines due to a number of degradation processes such as creep, corrosion, and cyclic loading, among others. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters. These techniques can often suffer to their sensitivity to changes in environmental and operational conditions, mistaking them as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration-based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study based on the S101
bridge is also presented to test the damage sensitivity to a chosen methodology.Peer ReviewedPostprint (published version
Characterization of Vehicle Behavior with Information Theory
This work proposes the use of Information Theory for the characterization of
vehicles behavior through their velocities. Three public data sets were used:
i.Mobile Century data set collected on Highway I-880, near Union City,
California; ii.Borl\"ange GPS data set collected in the Swedish city of
Borl\"ange; and iii.Beijing taxicabs data set collected in Beijing, China,
where each vehicle speed is stored as a time series. The Bandt-Pompe
methodology combined with the Complexity-Entropy plane were used to identify
different regimes and behaviors. The global velocity is compatible with a
correlated noise with f^{-k} Power Spectrum with k >= 0. With this we identify
traffic behaviors as, for instance, random velocities (k aprox. 0) when there
is congestion, and more correlated velocities (k aprox. 3) in the presence of
free traffic flow
A rarefaction-tracking method for hyperbolic conservation laws
We present a numerical method for scalar conservation laws in one space
dimension. The solution is approximated by local similarity solutions. While
many commonly used approaches are based on shocks, the presented method uses
rarefaction and compression waves. The solution is represented by particles
that carry function values and move according to the method of characteristics.
Between two neighboring particles, an interpolation is defined by an analytical
similarity solution of the conservation law. An interaction of particles
represents a collision of characteristics. The resulting shock is resolved by
merging particles so that the total area under the function is conserved. The
method is variation diminishing, nevertheless, it has no numerical dissipation
away from shocks. Although shocks are not explicitly tracked, they can be
located accurately. We present numerical examples, and outline specific
applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding
- …
