4 research outputs found

    Is current 6TO4 relay deployment adequate?

    Get PDF
    6to4 is a mechanism for providing IPv6 connectivity where native IPv6 is still unavailable. 6to4 is based on relay routers deployment. The anycast technique is used to address relays, and each relay’s advertisement may be seen globally or only within a limited scope. The number of available relays is important to this mechanism’s robustness, as well as their geographic location. Due to the details of the mechanism, limited scope relays are not easy to find, despite the fact their location and existence is key to evaluate suitability of current deployment

    Observations of IPv6 Addresses

    Get PDF
    IPv6 addresses are longer than IPv4 addresses, and are so capable of greater expression. Given an IPv6 address, conventions and standards allow us to draw conclusions about how IPv6 is being used on the node with that address. We show a technique for analysing IPv6 addresses and apply it to a number of datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-enabled TLD DNS server and when running traceroute across the production IPv6 network. The technique quantifies differences in these datasets that we intuitively expect, and shows that IPv6 is being used in different ways by different groups

    Observations of IPv6 Addresses

    Get PDF
    IPv6 addresses are longer than IPv4 addresses, and are so capable of greater expression. Given an IPv6 address, conventions and standards allow us to draw conclusions about how IPv6 is being used on the node with that address. We show a technique for analysing IPv6 addresses and apply it to a number of datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-enabled TLD DNS server and when running traceroute across the production IPv6 network. The technique quantifies differences in these datasets that we intuitively expect, and shows that IPv6 is being used in different ways by different groups

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd
    corecore