89,012 research outputs found

    A cyberciege traffic analysis extension for teaching network security

    Get PDF
    CyberCIEGE is an interactive game simulating realistic scenarios that teaches the players Information Assurance (IA) concepts. The existing game scenarios only provide a high-level abstraction of the networked environment, e.g., nodes do not have Internet protocol (IP) addresses or belong to proper subnets, and there is no packet-level network simulation. This research explored endowing the game with network level traffic analysis, and implementing a game scenario to take advantage of this new capability. Traffic analysis is presented to players in a format similar to existing tools such that learned skills may be easily transferred to future real-world situations. A network traffic analysis tool simulation within CyberCIEGE was developed and this new tool provides the player with traffic analysis capability. Using existing taxonomies of cyber-attacks, the research identified a subset of network-based attacks most amenable to modeling and representation within CyberCIEGE. From the attacks identified, a complementary CyberCIEGE scenario was developed to provide the player with new educational opportunities for network analysis and threat identification. From the attack scenario, players also learn about the effects of these cyber-attacks and glean a more informed understanding of appropriate mitigation measures.http://archive.org/details/acyberciegetraff109451057

    Detection of network anomalies and novel attacks in the internet via statistical network traffic separation and normality prediction

    Get PDF
    With the advent and the explosive growth of the global Internet and the electronic commerce environment, adaptive/automatic network and service anomaly detection is fast gaining critical research and practical importance. If the next generation of network technology is to operate beyond the levels of current networks, it will require a set of well-designed tools for its management that will provide the capability of dynamically and reliably identifying network anomalies. Early detection of network anomalies and performance degradations is a key to rapid fault recovery and robust networking, and has been receiving increasing attention lately. In this dissertation we present a network anomaly detection methodology, which relies on the analysis of network traffic and the characterization of the dynamic statistical properties of traffic normality, in order to accurately and timely detect network anomalies. Anomaly detection is based on the concept that perturbations of normal behavior suggest the presence of anomalies, faults, attacks etc. This methodology can be uniformly applied in order to detect network attacks, especially in cases where novel attacks are present and the nature of the intrusion is unknown. Specifically, in order to provide an accurate identification of the normal network traffic behavior, we first develop an anomaly-tolerant non-stationary traffic prediction technique, which is capable of removing both pulse and continuous anomalies. Furthermore we introduce and design dynamic thresholds, and based on them we define adaptive anomaly violation conditions, as a combined function of both the magnitude and duration of the traffic deviations. Numerical results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, under different anomaly traffic scenarios and attacks, such as mail-bombing and UDP flooding attacks. In order to improve the prediction accuracy of the statistical network traffic normality, especially in cases where high burstiness is present, we propose, study and analyze a new network traffic prediction methodology, based on the frequency domain traffic analysis and filtering, with the objective_of enhancing the network anomaly detection capabilities. Our approach is based on the observation that the various network traffic components, are better identified, represented and isolated in the frequency domain. As a result, the traffic can be effectively separated into a baseline component, that includes most of the low frequency traffic and presents low burstiness, and the short-term traffic that includes the most dynamic part. The baseline traffic is a mean non-stationary periodic time series, and the Extended Resource-Allocating Network (BRAN) methodology is used for its accurate prediction. The short-term traffic is shown to be a time-dependent series, and the Autoregressive Moving Average (ARMA) model is proposed to be used for the accurate prediction of this component. Furthermore, it is demonstrated that the proposed enhanced traffic prediction strategy can be combined with the use of dynamic thresholds and adaptive anomaly violation conditions, in order to improve the network anomaly detection effectiveness. The performance evaluation of the proposed overall strategy, in terms of the achievable network traffic prediction accuracy and anomaly detection capability, and the corresponding numerical results demonstrate and quantify the significant improvements that can be achieved

    Seeking Anonymity in an Internet Panopticon

    Full text link
    Obtaining and maintaining anonymity on the Internet is challenging. The state of the art in deployed tools, such as Tor, uses onion routing (OR) to relay encrypted connections on a detour passing through randomly chosen relays scattered around the Internet. Unfortunately, OR is known to be vulnerable at least in principle to several classes of attacks for which no solution is known or believed to be forthcoming soon. Current approaches to anonymity also appear unable to offer accurate, principled measurement of the level or quality of anonymity a user might obtain. Toward this end, we offer a high-level view of the Dissent project, the first systematic effort to build a practical anonymity system based purely on foundations that offer measurable and formally provable anonymity properties. Dissent builds on two key pre-existing primitives - verifiable shuffles and dining cryptographers - but for the first time shows how to scale such techniques to offer measurable anonymity guarantees to thousands of participants. Further, Dissent represents the first anonymity system designed from the ground up to incorporate some systematic countermeasure for each of the major classes of known vulnerabilities in existing approaches, including global traffic analysis, active attacks, and intersection attacks. Finally, because no anonymity protocol alone can address risks such as software exploits or accidental self-identification, we introduce WiNon, an experimental operating system architecture to harden the uses of anonymity tools such as Tor and Dissent against such attacks.Comment: 8 pages, 10 figure

    SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach

    Full text link
    This paper presents the development of a Supervisory Control and Data Acquisition (SCADA) system testbed used for cybersecurity research. The testbed consists of a water storage tank's control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks were conducted against the testbed. During the attacks, the network traffic was captured, and features were extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms were trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naive Bayes and KNN. Then, the trained machine learning models were built and deployed in the network, where new tests were made using online network traffic. The performance obtained during the training and testing of the machine learning models was compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environmentsComment: E-Preprin

    On the Activity Privacy of Blockchain for IoT

    Full text link
    Security is one of the fundamental challenges in the Internet of Things (IoT) due to the heterogeneity and resource constraints of the IoT devices. Device classification methods are employed to enhance the security of IoT by detecting unregistered devices or traffic patterns. In recent years, blockchain has received tremendous attention as a distributed trustless platform to enhance the security of IoT. Conventional device identification methods are not directly applicable in blockchain-based IoT as network layer packets are not stored in the blockchain. Moreover, the transactions are broadcast and thus have no destination IP address and contain a public key as the user identity, and are stored permanently in blockchain which can be read by any entity in the network. We show that device identification in blockchain introduces privacy risks as the malicious nodes can identify users' activity pattern by analyzing the temporal pattern of their transactions in the blockchain. We study the likelihood of classifying IoT devices by analyzing their information stored in the blockchain, which to the best of our knowledge, is the first work of its kind. We use a smart home as a representative IoT scenario. First, a blockchain is populated according to a real-world smart home traffic dataset. We then apply machine learning algorithms on the data stored in the blockchain to analyze the success rate of device classification, modeling both an informed and a blind attacker. Our results demonstrate success rates over 90\% in classifying devices. We propose three timestamp obfuscation methods, namely combining multiple packets into a single transaction, merging ledgers of multiple devices, and randomly delaying transactions, to reduce the success rate in classifying devices. The proposed timestamp obfuscation methods can reduce the classification success rates to as low as 20%

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Outsmarting Network Security with SDN Teleportation

    Full text link
    Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call \emph{teleportation}. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.Comment: Accepted in EuroSP'1
    • …
    corecore